Forschung

Was die Forschung untersucht und herausfindet, wird durch  Wissenstransfer greifbar und verständlich.
Und ermöglicht so sinnvolles und effektives Handeln für die Meere .

DBG: Lingulodinium polyedrum lässt das Meer leuchten

Nachtansicht von sich am Strand brechender Welle, die durch Lingulodinium polyedrum blau leuchtet

© MierCatPhotography / Pixabay

Pressemitteilung, 02. Januar 2013, Sektion Phykologie der Deutschen Botanischen Gesellschaft

Algenforscher haben den Einzeller Lingulodinium polyedrum zur Alge des Jahres gewählt.
Der mit einem Panzer und zwei Geißeln ausgestattete Dinoflagellat fasziniert nicht nur die Forschenden sondern auch Skipper und Strandgänger, weil er sich unter bestimmten Bedingungen massenhaft vermehren und nachts das Meer blau leuchten lassen kann. Die Wissenschaftler, die den Dinoflagellaten auswählten und in der Sektion Phykologie der Deutschen Botanischen Gesellschaft organisiert sind, wollen damit eine Algenart würdigen, deren Leuchtfähigkeit fasziniert, einen ausgeprägten Tag-Nacht-Rhythmus hat und als Sensor genutzt wird, wie PD Dr. Mona Hoppenrath vom Deutschen Zentrum für marine Biodiversitätsforschung DZMB bei Senckenberg am Meer in Wilhelmshaven ausführt.

Schwimmt im Phytoplankton

Lingulodinium polyedrum gewinnt seine Energie wie Pflanzen durch Photosynthese und lebt deshalb in den lichtdurchfluteten oberen Schichten temperierter und warmer Meere. Wie alle Dinoflagellaten hat Lingulodinium zwei Geißeln, mit denen er sich im Wasser fortbewegt. Eine der beiden Geißeln treibt ihn mit Wellenbewegungen an, sodass sein Körper rotiert. So kam die Art zu ihrem Namen, da „dineo“ sich drehen oder wirbeln bedeutet. Nachts wandern Dinoflagellaten um sich rotierend mehrere Meter in die Tiefe, wo sie Nährstoffe aufnehmen, wie etwa Nitrat. Sind genügend Nährstoffe vorhanden, und hat das Meer eine für sie optimale Temperatur, kann sich der Flagellat massenhaft vermehren. Wie viele Dinoflagellaten ist Lingulodinium außen von einer Hülle aus stabilen Platten geschützt, weshalb diese Lebewesen im deutschen Sprachraum oft als „Panzergeißler“ bezeichnet werden. In unseren Breiten machen Dinoflagellaten gemeinsam mit Kieselalgen den Hauptteil des pflanzlichen Planktons aus. Unter für sie günstigen Bedingungen können sich Dinoflagellaten massenhaft vermehren und dann das Meer rötlich, orange oder braun färben, je nach den in ihnen enthaltenen Farbstoffen.

Wie der Dinoflagellat das Meer färbt

Lingulodinium polyedrum ist einer der wenigen Dinoflagellaten, die mit einer biochemischen Reaktion in ihrem Inneren blaues Licht erzeugen können. Dieses Biolumineszenz genannte Phänomen bewerkstelligt der Einzeller in winzigen, abgeschlossenen, organartigen Abteilen in seinen Zellen, den sogenannten Szintillonen, die das dazu notwendige Enzym und ein Binde-Eiweiß für das Substrat enthalten. Lingulodinium erzeugt blaue Lichtblitze, wenn Scherbewegungen an ihm rütteln oder die Zellen aufgebrochen werden und glimmt, besonders gegen Ende der Nacht. Werden mehrere Millionen Zellen gleichzeitig geschüttelt, etwa durch Boote oder sich brechende Wellen, verschwimmen Lichtblitze und Glimmen der einzelnen Zellen zu einem Leuchten. Das ist besonders gut an manchen Küsten während der Nacht zu beobachten. In unserer Region tritt das Phänomen im Sommer vor der Küste Helgolands auf, wo es allerdings von dem Dinoflagellaten Noctiluca erzeugt wird. An nordeuropäischen Küsten ist aufgrund des kühlen Klimas dagegen kaum mit einer Massenvermehrung von Lingulodinium zu rechnen.

Leuchten zur Feindabwehr?

Noch ist nicht endgültig geklärt, warum Lingulodinium polyedrum nachts überhaupt leuchtet. Einer bislang nicht widerlegten Hypothese zufolge locken die Dinoflagellaten damit Raubtiere an, die die sie selbst bedrohenden Feinde auffressen. „Versuche zeigten, dass Fische, die Räuber von Dinoflagellaten beispielsweise  kleine Krebse fressen, in der Nacht effektiver jagen, wenn die Dinoflagellaten leuchten. Dies wird als „burglar alarm“ Hypothese, also als eine Art Alarmanlagenfunktion diskutiert“ erklärt Hoppenrath, die bereits 21 neue Arten der weltweit etwa 2000-2500 vorkommenden Arten von Dinoflagellaten erstmals beschrieben und mit einem Namen versehen hat. „Es ist wichtig, die einzelnen Arten zu benennen und wissenschaftlich exakt zu beschreiben, weil das die Grundlage für viele wissenschaftliche wie angewandte Disziplinen ist. Das ist wichtig für Ökosystem- oder Biodiversitätsforscher, für Evolutionsbiologen und für Menschen im Fischereiwesen“, fasst die auf die Klassifikation (Taxonomie) von Dinoflagellaten spezialisierte Biologin ihre Arbeit zusammen.

Mehr interdisziplinäre Forschung ist notwendig

Lingulodinium polyedrum wird mit Substanzen in Verbindung gebracht, die auch von anderen Panzergeißlern bekannt sind. Vermutlich ist er in der Lage, die als Yessotoxin und Saxitoxin bezeichneten Stoffe herzustellen, die in der Lebensmittelsicherheit eine Rolle spielen. Für den Menschen werden sie dann bedenklich, wenn sie in der Nahrungskette angereichert werden. Damit Menschen keine zu großen Mengen davon aufnehmen, weil sie Schalentiere wie Muscheln oder Krebse essen, die das Meerwasser filtrieren und diese Substanzen daher im Laufe ihres Lebens anreichern, hat die Europäische Behörde für Lebensmittelsicherheit (EFSA) 2009 Grenzwerte für den Verzehr von Schalentierfleisch festgelegt. In welchen Mengen Lingulodinium polyedrum die beiden Stoffe produziert, ist aber bislang nicht exakt bestimmt. Da aber nie ganz auszuschließen ist, ob sich nicht auch andere, bedenklichere Organismen in den leuchtenden Wellen befinden, sollte Vorsicht beim Baden walten. Denn andere Arten von Dinoflagellaten können durchaus relevante Mengen Toxine produzieren, die dem Menschen auch ohne Verzehr gefährlich werden können. Daher sei es so wichtig, Dinoflagellaten genau zu klassifizieren, betont Hoppenrath. Zur weiteren Forschung sollten nicht nur Toxikologen oder Ernährungsforscher, sondern auch auf die Verwandtschaftsverhältnisse (Taxonomie) spezialisierte Biologen beitragen.

Lingulodinium hat ein Nachtleben

Für Lingulodinium polyedrum interessieren sich auch andere Forscher, weil er einem ausgeprägten Tag-Nacht-Rhythmus folgt. Das Meeresleuchten entsteht hauptsächlich nachts. „In der Nacht gibt es eine viel größere Anzahl von Szintillonen als am Tag. Diese enthalten die nachts auch vermehrt vorkommenden Eiweiße, die an der biolumineszenten Reaktion beteiligt sind, “, führt Professorin Dr. Maria Mittag aus, die den Regulatiosmechanismus eines dieser Eiweiße des Tag-Nacht-Rhythmus an Lingulodinium polyedrum erforschte, als dieser noch den wissenschaftlichen Namen Gonyaulax polyedra trug. Auch die Wanderung von den oberen Meeresschichten in die Tiefe werde bei Lingulodinium polyedrum von seiner inneren Uhr gesteuert. „Interessanterweise ist die Periode des Biolumineszenz-Rhythmus bei Lingulodinium aber etwas kleiner als 24 Stunden, im Gegensatz zum Menschen, bei dem der Schlaf-Wach-Rhythmus – ohne die tägliche Justierung durch den Wechsel von Sonne und Nacht – bei etwa 25 Stunden liegt“, erklärt Professorin Mittag.

Lingulodinium polyedrum fasziniert Biologen, weil er noch einige genetische Geheimnisse birgt. Bislang weiß niemand genau, warum dieser winzige Organismus viel mehr Erbsubstanz enthält, als der sehr viel größere Mensch oder warum die Gene für manche Eiweiße in tausenden von Kopien vorkommen, wie etwa die des genannten Bindeproteins oder das des Farbstoffes Peridinin, der ihm seine orange-braune Farbe verleiht. Die vielen Kopien erschweren es auch, ihn wissenschaftlich zu untersuchen, um etwa molekularbiologische Prozesse zu enträtseln.

Nutzung als Sensor

Wegen seiner Leuchtfähigkeit kann der Panzergeißler Lingulodinium polyedrum auch zum Messen von Giften und / oder neuen Wirkstoffen genutzt werden. Beispielsweise kann bei toxischen Substanzen der Zeitpunkt bestimmt werden, ab wann die meisten Lingulodinium-Zellen absterben und zerfallen, was am stärkeren Aufleuchten zu erkennen ist. Zum anderen können Lingulodinium-Zellen als Sensor für Versuche über Zellstress dienen, der sich ebenfalls über die Biolumineszenz messen lässt. „Als Testsystem eignet sich Lingulodinium besonders gut, weil er sich recht gut kultivieren lässt, weil schon einiges über ihn bekannt ist und die Biolumineszenz automatisiert zu messen ist“, erklärt Hoppenrath. „Außerdem kann mit diesem Einzeller die Zahl von Tierversuchen, mit denen sonst solche Erkenntnisse gewonnen werden, vermindert werden“.

Diese Pressemitteilung findet ihr bei der Sektion Phykologie der Deutschen Botanischen Gesellschaft.

20.000 Pinguine durch Ölpest im Atlantik bedroht

Ölpest: Felsenpinguin mit gelben langen Haarbüscheln seitlich des Kopfes

© Frankenstein / Pixabay

Nachdem ein Frachtschiff gekentert ist, sind rund 20.000 seltene Felsenpinguine an der südafrikanischen Inselgruppe Tristan da Cunha durch das ausgelaufene Öl bedroht. Tierschützer:innen konnten etwa 500 Pinguine in eine Tierstation bringen, um sie dort von dem Öl zu befreien, bevor ihnen das Reinigungsmittel ausging. Da das Gebiet eines der abgelegensten der Welt ist, dauert es Tage, bis Nachschub vorhanden ist. Es ist ein Wettlauf mit der Zeit, da das Gefieder der Pinguine durch die Ölschicht seine isolierende Wirkung verliert und die Tiere durch Unterkühlung sterben könnten. Zudem versuchen viele Tiere ihr Gefieder mit ihrem Schnabel zu säubern. Dadurch gelangen die giftigen Substanzen auch in die Körper und können ebenfalls zum Tod der geschützten Pinguine führen.

Den Artikel Pinguine durch Ölpest im Atlantik bedroht vom 24.03.2011 findet ihr auf der Seite der OÖNachrichten.

Der Artikel Öl – Tödliche Gefahr für die Meere vom NABU geht noch tiefer auf die weiteren Auswirkungen von jeder einzelnen Ölpest ein.

Weitere Informationen erhaltet ihr in unserem Infotext Öl- und Gasplattformen.

Da Schiffsöl nicht nur Umweltzerstörungen hervorruft, wenn es ausläuft, wird nach Alternativen gesucht. In unseren Artikeln NABU-Studie zu Schiffstreibstoff: Klimaschutz mit Ammoniak vom 30.06.2021 und Flüssiggas klimaschädlicher als gedacht vom 20.01.2020 beleuchten wir zwei zur Diskussion stehenden Treibstoffe.

Bioplastik ist nicht immer „grün“

Eine Tüte aus Bioplastik mit Äpfeln drin

© John Cameron / Unsplash

Pressemitteilung, 22.10.2010, pressetext

Gesamter Lebenszyklus genauso schädlich wie bei Erdöl-Polymeren

(pte021/22.10.2010/13:40) – Plastik, das aus Pflanzenbasis hergestellt wurde, ist mindestens genauso umweltschädlich wie Kunststoffe aus Erdöl. Das zeigt sich, wenn man sowohl die Nachhaltigkeit des Materials selbst als auch den Lebenszyklus der nötigen Ressourcen berücksichtigt, kommen Forscher der University of Pittsburgh http://www.pitt.edu in der Fachzeitschrift „Environmental Science & Technology“ zum Schluss.

Zwar haben Biopolymere den Vorteil, dass sie biologisch abbaubar und weniger toxisch sind und erneuerbare Ressourcen verwenden. Was ihre Gesamtbilanz aber zunichte macht, ist die Herstellung der Ausgangsstoffe. „Die Landwirtschaft und die chemische Verarbeitung, die zur Produktion nötig sind, verschlingen ebenfalls Energie und setzen Unmengen an Düngemittel und Pestiziden in die Umwelt frei“, berichtet Studienleiter Michaelangelo Tabone.

Umwelt leidet an Produktion

Die Forscher untersuchten dazu zwölf verschiedene Polymere, die als Grundlage Zucker und Maisstärke (PLA-NW und PLA-G), Maisstängel (PHA-S), Maiskörner (PHA-G), Erdöl (PVC, PC, HDPE, PET, LDPE) oder Propengas (PP) verwenden sowie auch eine Hybridplastik, die sowohl auf Erdöl als auch Pflanzen basiert (B-PET). Zunächst analysierten sie den gesamten Lebenszyklus einer 30 Gramm schweren Kugel des jeweiligen Polymers in Hinsicht auf Umwelt, Gesundheit, Energieeinsatz, Rohmaterialien und zur Produktion nötige Chemikalien. Dann prüften sie, wie verträglich und energieintensiv das Endprodukt und dessen Abbau ist.

Jedes Bioplastik hat ihre Tücken, so das Ergebnis. Alle Biopolymere überdüngen die Gewässer und zerstören die Ozonschicht. Zwei der Maisvarianten tragen maßgeblich zur Versäuerung der Umwelt bei, jene auf Maiskörner-Basis braucht zudem beträchtliche Mengen fossiler Treibstoffe. Selbst im Vergleich der krebserregenden Inhaltsstoffe liegt Bioplastik nur im Mittelfeld. Insgesamt am schlechtesten schnitt Hybrid-Plastik ab, das laut den Forschern alle möglichen Nachteile sowohl der Erzeugung als auch der Abbaubarkeit in sich vereint.

Besser vermeiden als ersetzen

Umweltexperten sehen die Suche nach dem am wenigsten umweltschädlichen Kunststoff mit Skepsis. „Die Frage sollte bereits lauten, ob wir diese kurzlebigsten Verpackungsstoffe überhaupt brauchen“, kritisiert Markus Meissner vom österreichischen Ökologieinstitut http://www.ecology.at gegenüber pressetext. Bioplastik sei derzeit noch teuer, werde jedoch von Lebensmittelketten bereits für erste Produktverpackungen verwendet. „Man ersetzt ein Einwegprodukt durch ein anderes. Den ernormen Entwicklungsaufwand dafür sollte man besser für Abfallvermeidung und Wiederverwendung einsetzen“, so der Experte für Ressourcenmanagement.

Im Vorfeld der Fußball-Europameisterschaft 2008 hat das Ökologieinstitut mit dem deutschen Öko-Institut und der Schweizer carbotech AG die von den Veranstaltern als „umweltfreundlich“ beworbenen Getränkebecher aus Maisplastik untersucht. Die ökologische Nutzen der biologischen Abbaubarkeit ist zu vernachlässigen gegenüber dem Erzeugungsaufwand, so das Ergebnis (pressetext berichtete: http://pressetext.com/news/080110025/ ).

Diese Pressemitteilung findet ihr bei pressetext.

In einer anderen Studie wurde der Abbau im Meer von Bioplastik mit dem von Plastik aus Erdölbasis verglichen – Unterschiede wurden erschreckend wenige festgestellt.

Meeresspiegelanstieg bedroht New York City

Fotomontage mit Überblick über Manhattan unter Wasser und Steg auf der Wasseroberfläche

© radex118 / Pixabay

Wissenschaftler:innen aus den USA legen nahe, dass New York spätestens 2100 stark von Überschwemmungen betroffen sein wird, die die gesamte Innenstadt überfluten werden. Indem sie zehn aktuelle Klimamodelle auswerteten, stellten sie fest, dass der Meeresspiegel an der Ostküste der USA besonders schnell ansteigt und bis zu 21 Zentimeter über dem globalen Durchschnitt liegen könnte. Außerdem könnte sich das Tempo des Meeresspiegelanstiegs bis 2100 im Vergleich zu heute verdoppeln. Die Ursache für den schnellen Anstieg sehen die Wissenschaftler:innen im Abschmelzen der Gletscher in Grönland und in der thermischen Ausdehnung des Wassers.

Diese Prognose ist fatal, da entlang der Ostseeküste der USA die größten Metropolen liegen, die sich zudem nur knapp über dem Meeresspiegel befinden. Schon ein Meeresspiegelanstieg um 45 Zentimeter wäre zum Beispiel fatal für New York City, das weniger als 40 Zentimeter über dem Meeresspiegel liegt.

Der Nordatlantik reagiert aufgrund der Nordatlantikzirkulation sehr sensibel auf klimatische Veränderungen. Indem Gletscher schmelzen, setzen sie sehr viel Süßwasser frei. Dies könnte diese natürliche thermohaline Zirkulation verlangsamen und weitere klimatische Veränderungen sowohl in Nordamerika als auch in Europa bewirken. Ein weiterer Strom, der durch die Erderwärmung beeinflusst wird und deshalb die Erderwärmung weiter befeuert, ist der Zirkumpolarstrom in der Antarktis. Diese zwei Strömungen sind Beispiele für Kipppunkte, die die Menschheit nicht überschreiten darf, wenn die Erderwärmung noch begrenzt werden soll.

Den Artikel Meeresspiegelanstieg bedroht New York City vom 17.03.2009 findet ihr bei SCINEXX.

WWF: Gefahr von Ölschiffsunfällen ist groß

Tanker auf offener See

© Freiheitsjunkie / Pixabay

Pressemitteilung, 19. März 2009, WWF

Frankfurt – 20 Jahre nach der Havarie der Exxon Valdez in Alaska – einer der größten Umweltkatastrophen aller Zeiten – ist die Gefahr einer Wiederholung groß. Das ist das Ergebnis einer heute veröffentlichten WWF-Studie „Lessons not Learned“. Demnach gibt es noch immer keine Techniken, um im Falle einer Ölpest deren Folgen wirksam verringern zu können. Zugleich breitet sich die Ölindustrie in der Arktis immer weiter aus, und durch das Schmelzen des Eises auf den arktischen Meeren wird die Schifffahrt in bislang unzugänglichen Gebieten möglich. Der WWF verlangt deshalb „No-Go-Areas“ wenigstens für die empfindlichsten Meeresgebiete in der Arktis. So müssten etwa die Bristol Bay in Alaska, aber auch andere Regionen der Welt wie die Umgebung der Lofoten in Norwegen für die Durchfahrt von Tankern und für die Förderung von Öl gesperrt werden.

„In den letzten 20 Jahren hat sich nur wenig getan, was den Schutz der Arktis vor einer Ölpest verbessert hat“, so WWF Meeresexperte Hans-Ulrich Rösner. „Gleichzeitig ist das Risiko einer neuen Katastrophe gestiegen. Die Ölindustrie versucht an immer mehr Stellen der Arktis Öl und Gas auszubeuten. Und ausgerechnet der ebenfalls vom Menschen verursachte Klimawandel sorgt durch den Rückgang des Eises auch noch dafür, dass immer mehr arktische Meeresgebiete für die Industrie zugänglich werden, dort neue und riskante Schifffahrtsrouten entstehen können.“

Die Folgen des Unfalls der Exxon Valdez vor 20 Jahren sind nach den Ergebnissen der Studie noch heute dramatisch. Trotz eines riesigen Aufwandes bei der Bekämpfung dieser wohl teuersten Ölpest aller Zeiten sind erhebliche Mengen des Öls noch in der Umwelt vorhanden und leicht unter Steinen oder im Boden zu finden. Dies hängt auch mit der arktischen Umwelt zusammen, da Öl bei niedrigen Temperaturen langsam abgebaut wird.

„Viele wild lebende Arten und Fischgründe haben sich bis heute nicht erholt, die Lebensgrundlagen der Fischer wurden zerstört, und die Wirtschaft in Alaska hat Milliarden von Dollar verloren. Wir müssen weitere Unfälle dieser Art unbedingt verhindern“, so Rösner.

Der 300 Meter lange Großtanker Exxon Valdez war am 24. März 1989 im Prince William Sound in Alaska trotz guten Wetters auf Grund gelaufen. Danach liefen 40.000 Kubikmeter Rohöl aus und verpesteten das Ökosystem – mit riesigen Folgen für die Natur sowie für das Leben und die Kultur der Bewohner der Region. 2100 Kilometer Küste wurden verschmutzt, 250.000 Seevögel, 4000 Seeotter und 300 Robben starben. Auch die Wirtschaft Alaskas wurde schwer getroffen. Allein die Verluste für die regionale Fischerei betrugen mindesten 286 Millionen Dollar. Die Schäden für Natur und Wirtschaft halten bis heute an, denn noch immer befinden sich Gifte der Exxon Valdez in der Nahrungskette.

Diese Pressemitteilung findet ihr beim WWF.

Hüpft wie ein Frosch: Neuer Tiefseefisch entdeckt

Psychedelica am Meeresboden

© CC BY-SA 3.0 / Wikimedia Commons

Bei dem jetzt entdeckten Tiefseefisch Histiophryne psychedelica handelt es sich um eine neue Art, die der Art der Anglerfische und der Gattung der Histiophryne angehört. Psychedelica unterscheidet sich jedoch in vielen Merkmalen von anderen Anglerfischen, da er sich hüpfend fortbewegt: Er stößt sich mit den beinartig ausgeprägten Flossen vom Meeresboden ab und sinkt wieder zu Boden. Zudem besitzt er keine Angel oder einen anderen Köder, mit dem er seine Beute anlockt. Vielmehr ist er sehr scheu und tarnt sich mit seinem wild gemusterten Köper im Sediment. Allerdings ist Psychedelica – anders als andere Anglerfische – nicht in der Lage, seine Musterung an die Umgebung anzupassen. Auch sein weiteres Aussehen unterscheidet sich von anderen Arten: Seine gebogene Schwanzflosse und die Hautfalten lassen ihn wie einen Ball erscheinen und seine Augen sind – ähnlich wie unsere Augen – nach vorne gerichtet, sodass sich seine Sehbereiche überlappen.

Den Artikel „Psychedelischer“ Anglerfisch hüpft wie ein Frosch vom 26.02.2009 findet ihr bei SCINEXX.

Ein weiterer Tiefseefisch, der jedoch auch als Speisefisch auf unseren Tellern landet, ist der Orange Roughy. Wie wir in unserem Blogbeitrag Tag des Artenschutzes: Tiefseefisch – Orange Roughy erklären, ist er ist aufgrund der rücksichtslosen Fangmethoden vom Aussterben bedroht.

In dem Blogbeitrag So tarnen sich Fische in der finsteren Tiefsee erfahrt ihr außerdem, was Tiefseefische mit Paradiesvögeln gemeinsam haben.

Kalte Quellen: Forscher:innen gehen auf Tauchstation

Ein White Smoker/ eine kalte Quelle in der Tiefsee; weißer Rauch strömt aus dem Meeresgrund

© Public Domain / Wikimedia Commons

Forscher:innen haben die Biodiversität an Methanquellen in der afrikanischen Tiefsee untersucht. An sogenannten kalten Quellen existieren nur sehr angepasste Lebewesen, die ohne Licht, mit enorm hohem Druck und giftigen Verbindungen, die aus den kalten Quellen austreten, auskommen müssen. Trotzdem enthält der Meeresboden in der Nähe von kalten Quellen ein Drittel der weltweiten Biomasse: In einem Gramm Meeressediment können sich mehrere Milliarden Zellen von Bakterien und Archaeen befinden, da kalte Quellen – abgesehen von den genannten lebensfeindlichen Bedingungen – Methan und andere Kohlenwasserstoffe liefern, die lebenswichtig für anaerobe Bakterien sind. Indem die Bakterien durch ihre Aktivität eine gleichbleibende Konzentration der Kohlenwasserstoffe im Sediment sicherstellen, haben sie ebenfalls eine wichtige Rolle im Kohlenstoffgleichgewicht inne.

Den Artikel Forscher gehen auf Tauchstation von Christina Beck vom 27.02.2009 findet ihr bei SCINEXX. Dort ist auch der von den beteiligten Wissenschaftler:innen geführte Blog über die Expedition zu finden.

UPDATE: 2013 beweist eine internationale Forschungsgruppe, dass in der unter dem Sediment liegenden ozeanischen Erdkruste Leben existiert. Diese Erkenntnis stellen wir in dem Blogbeitrag Forscher:innen finden Leben in der ozeanischen Kruste vom 15.03.2013 dar.

Da die Bakterien in dem Tiefseeboden sehr unzureichend erforscht sind und gleichzeitig so einen großen Teil der Biomasse ausmachen, scheint es unverantwortlich, wirtschaftlichen Interessen wie dem Tiefseebergbau oder dem Fischfang in der Tiefsee nachzugehen. Wahrscheinlich würden wir Gleichgewichte zerstören, von denen wir nicht einmal ahnen, dass es sie gibt.

IDW: Walfang ist keine Lösung

Älterer Fischer auf einem Fischkutter hält ein Stück Fleisch in den Händen

© Robert Bahn / Unsplash

Pressemitteilung, 13. Februar 2009, Informationsdienst Wissenschaft

Studie einer Freiburger Wissenschaftlerin widerlegt die Hypothese, dass Großwale in tropischen Gewässern der Fischerei die Fische wegfressen

In den vergangenen Jahren haben Japan und andere Walfangnationen vermehrt behauptet, dass Wale in Hinblick auf Nahrungsressourcen in direkter Konkurrenz zur Fischerei stünden und Schuld seien am Rückgang und teilweisem Zusammenbruch von Fischbeständen. Aus diesem Grund, so argumentieren Walfangsbefürworter häufig, sei die Dezimierung von Walbeständen ein geeignetes Mittel, um Fischfangmengen zu erhöhen.

Die Meeresbiologin Dr. Kristin Kaschner, Gastwissenschaftlerin am Institut für Biologie I der Albert-Ludwigs-Universität Freiburg, ging der Aussage nach, dass Wale der Fischerei in den Gewässern Nordafrikas und der Karibik die Fische wegfressen. In Zusammenarbeit mit amerikanischen und kanadischen Wissenschaftlerinnen und Wissenschaftlern entwickelte sie auf der Basis bereits vorhandener Daten Ökosystemmodelle der Meeresgebiete. Die Forscher simulierten, was passieren würde, wenn man die Walbestände in diesen Ökosystemen verringern würde. Die Ergebnisse dieser Studie sind jüngst als Artikel im Policy Forum von Science (Bd. 323, Issue 5916, S. 880-881, 2009) erschienen. Sie zeigen, dass, selbst unter Berücksichtigung der unsicheren Datenlage, eine komplette Ausrottung aller Großwale in den Forschungsgebieten nur zu einem sehr geringfügigen Anstieg der kommerziell genutzten Fischbestände führen würde. Anderseits konnte nachgewiesen werden, dass schon kleine Veränderungen im Fischereimanagement eine deutliche Vergrößerung der Fischbestände zur Folge hätten.

Japan als vehementer Befürworter des Walfangs wird in dieser Diskussion innerhalb der Internationalen Walfangskommission vor allem von Politikern aus neueren Mitgliedsstaaten in Nordwestafrika und der Karibik unterstützt. Es handelt es sich meist um Küstenländer, die an die subtropischen und tropischen Paarungsgebiete der Bartenwale angrenzen – Gewässer, in denen Bartenwale sich nur während der Paarung und zur Aufzucht ihrer Kälber aufhalten und in denen sie gewöhnlich fast nichts fressen.

Trotzdem wird das Thema der Nahrungskonkurrenz zwischen Walen und Fischerei auf den jährlich stattfindenden Treffen der Internationalen Walfangskommission stets neu diskutiert. Es würden wertvolle Zeit und Energie verschwendet, die dafür verwendet werden könnten, um konstruktive Lösungsstrategien zu entwickeln für den schwelenden Dauerkonflikt zwischen Walfängern und Walfangsgegnern, so Kaschner.

Die Wissenschaftler schlussfolgern aus ihrer Arbeit, dass Walfang keinesfalls eine Lösung für die massiven Fischereiprobleme von Entwicklungsländern ist. Stattdessen sollten diese Probleme im größeren Kontext einer globalen Fischereikrise gesehen werden, bei der Faktoren wie lokales Missmanagement, Ausbeutung von tropischen marinen Ressourcen durch Industrienationen sowie auch die Auswirkungen des Klimawandels berücksichtigt werden müssten.

Diese Pressemitteilung findet ihr beim Informationsdienst Wissenschaft.

Kaltwasserkorallenriffe in Europa

Koralle mit feinen Ärmchen

© CC BY-SA 3.0 / Wikimedia Commons

Nicht nur in tropischen Gewässern existieren Korallenriffe. Auch im Atlantik sorgt ein Kaltwasserkorallenriffsystem, das von Spanien bis ins Nordmeer reicht, für den Artenreichtum im Ozean. Es wird zudem immer deutlicher, dass Kaltwasserkorallen keine Seltenheit sind: Nachdem Fischer:innen, die Überreste von Korallen in ihren Netzen fanden, lange Zeit kein Glauben geschenkt wurde, ging man den Berichten Mitte der 90er-Jahre nach und fand nahezu überall, wo man suchte, Kaltwasserkorallenriffe.

Kaltwasserkorallen scheinen einen festen Bestandteil im Ozean einzunehmen, da Proben nachwiesen, dass einige Korallen über 200.000 Jahre alt sind. Einige Fossilienfunde weisen sogar darauf hin, dass die Riffe bereits seit über 30 Millionen Jahren bestehen. Forscher:innen sehen zudem immer mehr Hinweise, dass die Kaltwasserkorallenriffe die Kinderstuben vieler Fischarten sind. Hier haben die Fische ihre Eigelege und hier wachsen die Jungfische im Schutz der Korallen heran.

Jedoch wird dieser Lebensraum bereits massiv durch die Tiefseefischerei zerstört, die mit ihren Grundschleppnetzen nach Garnelen und anderen Schalentieren, sowie einigen Tiefseefischen wie dem Orange Roughy fischt. Diese fußballfeldgroßen Grundschleppnetze walzen alles um, was ihnen in den Weg kommt – so auch die Kaltwasserkorallen. Wissenschaftler:innen schätzen, dass weltweit bereits ein Drittel der Kaltwasserkorallenriffe beschädigt ist. Hinzu kommt, dass Tiefseeorganismen und dadurch auch die Kaltwasserkorallen viel langsamer wachsen als die Lebewesen in flacheren Gebieten und somit auch länger brauchen, um sich von der Zerstörung wieder zu erholen. Die Fischerei schneidet sich also ins eigene Fleisch: Ohne Kinderstube keine Fische. Außerdem droht auch die Ozeanversauerung die Kaltwasserkorallenriffe zu zerstören.

Deshalb arbeiten die Wissenschaftler:innen mit Hochdruck daran, die Korallenriffe ausfindig zu machen und sie zu erforschen. Denn dadurch können sie Druck auf politische Institutionen aufbauen und sie dazu bewegen, Schutzgebiete einzurichten, in denen die Hochseefischerei mit Schleppnetzen verboten ist. Zudem sollten wir zumindest wissen, was wir verlieren.

Den Artikel Kaltwasserkorallen – Das Great Barrier Reef des Nordens von Andreas Heitkamp vom 07.07.2006 findet ihr bei Scinexx.

Der Artikel Geheimnisvolles Leben im arktischen Eismeer von Rüdiger Schacht vom 09.07.2007 in der Welt verdeutlicht, dass auch in den arktischen und antarktischen Gewässern Korallen zu finden sind.

Weiterführende Informationen erhaltet ihr in dem Artikel Kaltwasserkorallen – aus der Grundlagenforschung auf die politische Agenda, der auf Researchgate veröffentlicht wurde.

UPDATE: Inzwischen ist mehr über Kaltwasserkorallen bekannt. So zum Beispiel, dass sie sich von tierischem Plankton ernähren, da sie aufgrund des fehlenden Lichts keine Symbiose mit Photosynthese betreibenden Algen eingehen können. Mehr Informationen stellt unser Blogbeitrag Wissenschaftler:innen haben das erste mesophotische Korallenriff Italiens entdeckt bereit.

Ein See flüssigen Kohlendioxids in 1300 Meter Tiefe

Unter der Meeresoberfläche strahlt die Sonne durch das blaue Wasser, nach unten hin wird es dunkler

© Cristian Palmer / Unsplash

Pressemitteilung, 01.09.2006, idw – Informationsdienst Wissenschaft

Japanisch-deutsches Meeresforscherteam entdeckt ungewöhnliches Ökosystem vor der Ostküste Taiwans:

Kohlendioxid ist ein Treibhausgas, dessen Konzentration in der Atmosphäre sich in den letzten Jahrzehnten signifikant erhöht hat und das für das weltweite Ansteigen der Temperaturen verantwortlich zu sein scheint. Unter Atmosphärendruck und Temperaturen um die 20° Celsius ist Kohlendioxid gasförmig. Erhöht man den Druck und senkt die Temperatur, verflüssigt sich das Gas bis es schließlich fest als Eis (CO2-Hydrat) vorliegt.
Hoher Druck und niedrige Temperaturen sorgen dann dafür, dass das Kohlendioxid nicht mehr als freies Gas in die Atmosphäre aufsteigen kann. Diese Eigenschaft erscheint in den Augen mancher Politiker und Wirtschaftsvertreter als die Lösung, um mit den steigenden Kohlendioxidkonzentrationen in der Atmosphäre fertig zu werden. Es gibt daher Pläne, dieses Gas in den Tiefen der Ozeane zu versenken.

Jetzt hat ein internationales Forscherteam vor der Ostküste Taiwans in 1300 Metern Tiefe einen natürlichen See aus flüssigem Kohlendioxid entdeckt und darüber in der Zeitschrift Proceedings of the National Academy of Sciences (PNAS) berichtet. Mit dem japanischen Tauchboot Shinkai 6500 untersuchten die Wissenschaftler dieses exotische Habitat auf unbekannte Lebensformen. Kohlendioxid in flüssiger Form ist eine Chemikalie, die das Leben für Mikroorgansimen auf eine harte Probe stellt. Wegen seiner Eigenschaften als Lösemittel wird es auch in für die Trockenreinigung von Kleidung genutzt. Die Forscher um Dr. Fumio Inagaki von JAMSTEC (Japan Agency for Marine Earth Science and Technology) und seine Kollegen vom Bremer Max-Planck-Institut für marine Mikrobiologie fanden einen negativen Effekt auf die mikrobielle Biomasse bestätigt: in der Nähe der Grenzschicht zwischen Kohlendioxidsee und dem Umgebungswasser sank die mittlere Mikrobendichte um den Faktor 100 vom 1 Milliarde Zellen pro Milliliter auf 10 Millionen. Über die Auswirkungen von CO2-Ansammlungen auf größere Lebewesen ist bisher wenig bekannt, die Forscher bemerkten aber die Abwesenheit von Tieren auf dem Meeresboden über dem CO2 See. Dafür hatten sich dort mikrobielle Spezialisten angesiedelt, die diese Kohlenstoffquelle anzapfen konnten. Nicht nur autotrophe (CO2-fixierende) Mikroorganismen sondern auch Methanzehrer haben dort ihre Nische. Das Methan und das CO2 entstehen geothermisch in dem nahegelegenen Hydrothermalfeld. Die Gase bahnen sich dann ihren Weg bis kurz unter dem Meeresboden wo sie vermutlich im Kontakt mit dem kalten Meereswasser zu Eis werden, es bilden sich Gashydrate. Das Forscherteam sieht den Fund dieses extremen Habitats als Glücksfall an, denn jetzt können sie die Auswirkungen von flüssigem Kohlendioxid auf das Tiefseeökosystem genau studieren.
Max-Planck-Forscherin Antje Boetius ist begeistert “ Als Wissenschaftler denkt man immer, man hätte schon alles gesehen, und dann findet man durch Zufall dieses Wunder in der Tiefsee.“

Wie geht es weiter?
Die Forscher um Fumio Inagaki planen nun weitere Untersuchungen des CO2-Sees im Rahmen einer multidisziplinären Forschungsfahrt. Die Herausforderung wird dabei sein, die physikalischen, chemischen und biologischen Auswirkungen der CO2 Ansammlung in situ, d.h. direkt am Meeresboden zu untersuchen, da sich das Gas beim Bergen der Proben schnell verflüchtigt und das die chemische Zusammensetzung der Probe und auch die mikrobiellen Prozesse stark verändern könnte.

Diese Pressemitteilung findet ihr bei idw – Informationsdienst Wissenschaft.

Unsere Ozeane fungieren als große Kohlenstoffsenke, sie können große Mengen an CO2 aufnehmen und sind daher extrem wichtig für den globalen Klimahaushalt. Mehr darüber könnt ihr in unserem Klima- und Forschungsblog nachlesen.

//