Forschung
Was die Forschung untersucht und herausfindet, wird durch Wissenstransfer greifbar und verständlich.
Und ermöglicht so sinnvolles und effektives Handeln für die Meere .
Mikroplastik im Meer: Neue Methode ermöglicht Analyse von Partikeln aus Beschichtungen
Pressemitteilung, 22.04.2024, Helmholtz-Zentrums Hereon und BSH
Mikroplastik im Meer könnte größtenteils auch aus Beschichtungen sowie Farbanstrichen von Schiffen und Bauwerken im Meer stammen. Daten dazu gibt es allerdings kaum. Das Helmholtz-Zentrum Hereon und das Bundesamt für Seeschifffahrt und Hydrographie (BSH) haben daher eine neue Methode entwickelt, um derartige Partikel zu analysieren. In Kürze testen sie die Methode an Proben aus Offshore-Windparks in der Nordsee. So kann die Belastung zukünftig besser erfasst und das Risiko für die Meeresumwelt bewertet werden.
„Abriebe von Partikeln entstehen nicht nur im Straßenverkehr, sondern zum Beispiel auch in der Schifffahrt“, erklärt BSH-Wissenschaftler Dr. Marten Fischer. „Farbanstriche und Beschichtungen gegen Bewuchs und Korrosion bestehen überwiegend aus Kunststoffen. Durch Verwitterung und Verschleiß entsteht Mikroplastik – Partikel, die kleiner sind als 5 Millimeter“. Doch wie viele Partikel gelangen so ins Meer?
Um das herauszufinden, kombinierte ein Forschungsteam verschiedene chemisch-analytische und mathematisch-statistische Methoden. „So können wir verschiedene Typen von Partikeln genauer erfassen und sicher voneinander unterscheiden. Dadurch können wir das potentielle Risiko von Partikeln aus Beschichtungen und Farbanstrichen für die Meere besser einschätzen“, erläutert Dr. Lars Hildebrandt, Erstautor der kürzlich veröffentlichten Studie am Hereon.
Derartige Partikel könnten auch vermehrt durch den Ausbau der Offshore-Windenergie und die zunehmende Schifffahrt in die Meeresumwelt gelangen. Die Studie wurde unter anderem durch das Bundesministerium für Digitales und Verkehr (BMDV) im Zusammenhang mit dem BMDV-Expertennetzwerk gefördert. Dort werden Abriebe aus der Verkehrsinfrastruktur und dem Verkehr selbst untersucht.
Untersuchung von Partikeln in Offshore-Windparks
Nun kommt die neue Methode direkt zum Einsatz. Wissenschaftlerinnen und Wissenschaftler sind vom 22. April bis zum 2. Mai 2024 mit dem BSH-Forschungsschiff ATAIR unterwegs, um die deutschen Meeresgewässer zu überwachen. Dabei nehmen sie auch Wasser- und Sedimentproben in Offshore-Windparks und in der Deutschen Bucht, die sie im Labor auf Partikel aus Farbanstrichen und Beschichtungen untersuchen.
Die Probenahme findet im Rahmen des europäischen Interreg-Projekts „Anemoi“ statt. Bis Ende 2026 untersuchen elf Partner aus sechs verschiedenen Ländern des Nordseeraums die stofflichen Emissionen von Offshore-Windenergieanlagen. Neben Partikeln aus Farbanstrichen und Beschichtungen stehen ebenfalls Spurenmetalle und organische Schadstoffe im Fokus der Untersuchungen.
Der Ausbau der Offshore-Windenergie in Nordsee und Ostsee ist ein wichtiger Bestandteil der Energiewende. Die Untersuchungen von Hereon und BSH tragen dazu bei, die Meeresumweltüberwachung kontinuierlich zu verbessern. So können die Auswirkungen von neuartigen Substanzen auf die Meeresumwelt bewertet und wirksame Maßnahmen umgesetzt werden, die den Eintrag in die Meere reduzieren.
Diese Pressemitteilung und weitere Informationen findet ihr beim BSH.
Es gibt diverse Arten von Mikroplastikeinträgen in die Meere. Direkt gelangen Bestandteile aus Farbanstrichen und Beschichtungen von Schiffen ins Wasser. Doch auch indirekt tragen zum Beispiel Bestandteile von Kosmetika, Reifenabrieb und Kunststoffgranulat dazu bei, indem sie über Abwasser, Wind, Regen und Flüsse ins Meer und bis in die Tiefsee transportiert werden.
Energiekrise bei Dorsch und Co.: Wie Überdüngung und Klimawandel die Nahrungsnetze der Ostsee verändern
Pressemitteilung, 27.03.2024, Thünen
Der Ostdorschbestand ist seit Jahren in der Krise. Trotz historisch niedrigem Fischereidruck erholt sich der Bestand nicht. Bislang gab es hierfür keine schlüssige Erklärung. Forschende des Leibniz-Instituts für Ostseeforschung Warnemünde (IOW) und des Thünen-Instituts für Ostseefischerei konnten nun erstmals nachweisen, dass sich in Ostseeregionen mit großflächigen Blüten fädiger Blaualgen, die durch Überdüngung und Klimawandel verstärkt auftreten, das Nahrungsnetz für den Dorsch verlängert hat. Dadurch steht der Population deutlich weniger Energie zur Verfügung als in Gebieten ohne Blaualgenblüten. Verbessert sich das Nährstoffregime nicht, kann sich der Ostdorsch nicht erholen.
Das marine Phytoplankton ist der Energielieferant für alle Meeresökosysteme: Diese winzig kleinen, im Meerwasser schwebenden Pflanzen binden mittels Photosynthese Energie in Form von Biomasse, die dann Schritt für Schritt in den marinen Nahrungsnetzen weitergereicht wird, bis hin zu unterschiedlichen Arten von Fischen und Fischfressern. Wieviel Energie bei den unterschiedlichen Lebewesen ankommt, hängt von der Position ab, die sie im Nahrungsnetz einnehmen. Man weiß, dass von einer Ebene zur nächsten rund 90 Prozent der Energie als Wärme verloren gehen. Je mehr Ebenen ein Nahrungsnetz hat, umso weniger Energie kommt bei den Lebewesen mit den höchsten Positionen wie etwa Raubfischen an.
„Das Phytoplankton der zentralen Ostsee hat sich in den letzten drei Jahrzehnten stark verändert. Zunehmend wird es im Sommer von massenhaft auftretenden fadenförmigen Cyanobakterien dominiert. Das Phänomen ist als Blaualgenblüten bekannt“, sagt Markus Steinkopf, Meeresbiologe am IOW. Auslöser seien die klimawandelbedingt höheren Wassertemperaturen und die nach wie vor zu hohe Nährstoffbelastung der Ostsee; das begünstige Blaualgen gegenüber anderem Phytoplankton. „Aufgrund ihrer Form und Größe können fädige Blaualgen nicht von den kleinen Krebsen des Zooplanktons gefressen werden, die in marinen Nahrungsnetzen sonst die nächste Position nach dem Phytoplankton einnehmen. Welche Folgen das für die Energieversorgung höherer Lebewesen hat, war bislang weitgehend ungeklärt“, sagt der Erstautor der jetzt im Fachjournal Ecology and Evolution publizierten Studie zu Nahrungsnetz-Veränderungen in der Ostsee.
Hier setzte Steinkopf an und verglich, welche Position im Nahrungsnetz Dorsche und Flundern haben, die in der zentralen Ostsee leben, mit denen in der westlichen Ostsee, wo Blaualgenblüten keine Rolle spielen. Um die Nahrung der untersuchten Fische und somit ihre Nahrungsnetzposition zu identifizieren, nutzte er die Stickstoff-Isotopenanalyse in Aminosäuren. Denn je nachdem, was die Fische fressen, lassen sich in ihrem Muskelfleisch charakteristische Muster der unterschiedlichen stabilen Amino-Stickstoffisotope feststellen und sehr präzise interpretieren.
Bezüglich der Dorsche kam das Forschungsteam um den Warnemünder Wissenschaftler zu einem erstaunlich klaren Ergebnis: In der Blaualgen-belasteten zentralen Ostsee ist das Nahrungsnetz der dort lebenden Ostdorsche deutlich länger als das der Dorsche in der westlichen Ostsee. Steinkopf: „Die Nahrungsnetzposition des Westdorsches liegt bei 4,1, die des Ostdorsches dagegen zwischen 4,8 und 5,2. Das bedeutet einen Energieverlust von gut 60 bis 99 Prozent für den Ostdorsch im Vergleich zum Westdorsch.“ Bei den Flundern gab es hingegen zwischen den beiden Meeresgebieten nur geringe Unterschiede in der Nahrungsnetzposition: 3,4 in der westlichen vs. 3,1 in der zentralen Ostsee.
„Flundern fressen in beiden Seegebieten hauptsächlich Muscheln, deren Nahrungsnetz auf Phytoplankton basiert, auch wenn es Blaualgenblüten gibt. Große Unterschiede waren hier also nicht zu erwarten“, erläutert Uwe Krumme, Co-Autor der Studie vom Thünen-Institut für Ostseefischerei. Am Thünen-Institut, das über die entsprechende Expertise zu den Fischbeständen der Ostsee verfügt, wurden unter anderem die Fischproben für die Studie bearbeitet. „Bei den Dorschen sieht es anders aus. Westdorsche ernähren sich vor allem von der Gemeinen Strandkrabbe, die am Boden lebt. Ihr Nahrungsnetz ist daher ohnehin kürzer als das der Ostdorsche, die vor allem Heringe und Sprotten fressen, die wiederum von Zooplankton leben. Diese Ernährungsunterschiede allein können die deutlich höhere Nahrungsnetzposition der Ostdorsche aber nicht erklären“, so Krumme weiter.
Wie kommt es also zu der deutlichen Nahrungsnetzverlängerung für den Ostdorsch? „In den Blaualgengebieten stellt sich das Zooplankton um. Statt sich vegetarisch zu ernähren, frisst es Mikroben, die sich von Ausscheidungen oder Abbauprodukten der Blaualgen ernähren, wenn die Blüten absterben. Das haben frühere Analysen des IOW gezeigt. Damit entsteht eine komplette zusätzliche Nahrungsnetzebene, die zwangsläufig zu hohem Energieverlust bei den Tieren auf nachgeschalteten Nahrungsnetzpositionen führt“, erklärt Natalie Loick-Wilde, ebenfalls Co-Autorin der Studie und Spezialistin für Isotopen-basierte Nahrungsnetz-Analyse. „Diese Art der Nahrungsnetzverlängerung bei Fischen wird schon länger theoretisch diskutiert. Wir können sie nun erstmals direkt messen und eindeutig dem Blaualgen-geprägten Nahrungsnetz zuordnen“, sagt die Meeresbiologin. Sie hat am IOW eines der wenigen marinen Forschungslabore weltweit etabliert, in dem stabile Isotope von Stickstoff und Kohlenstoff in 13 verschiedenen Aminosäuren gemessen werden können.
„Die Isotopen-basierte Nahrungsnetz-Analyse ist ein wertvolles Instrument, um grundlegende Veränderungen in Ökosystemen zu sichtbar machen und Zusammenhänge besser zu verstehen. Die Energiekrise beim Ostdorsch zeigt, dass Einschränkungen bei der Fischerei für eine Bestandserholung allein nicht mehr ausreichen. Vielmehr muss das Nahrungsnetz an sich rehabilitiert werden. Das gelingt aber nur, wenn man länderübergreifend alle Möglichkeiten ausschöpft, um die Überdüngung der Ostsee in den Griff zu bekommen“, resümiert Markus Steinkopf. Die Ergebnisse zur Flunder zeigen zwar, dass nicht alle Teile des Nahrungsnetzes gleichermaßen betroffen sind. Aber: „Die Studie lässt auch vermuten, dass Nahrungsnetzverlängerungen nicht nur für die Ostsee relevant sind, sondern sich zu einem Problem globaler Natur entwickeln werden, da der Klimawandel schädliche Algenblüten und viele weitere Stressoren für Nahrungsnetze verstärkt“, so der Meeresbiologe abschließend.
Diese Pressemitteilung und die Originalpublikation findet ihr beim Thünen Institut.
Die Studie verdeutlicht, dass die Ostdorsch Krise weit über regionale Fischereifragen hinausgeht und globale Herausforderungen wie Überdüngung und Klimawandel widerspiegelt. Vor allem die Ostsee ist stark von Eutrophierung belastet und in einem alarmierend schlechtem Zustand. Eine Erholung der Ostseedorschpopulation erfordert daher eine grundlegende ökologische Sanierung der Ostsee durch internationale Kooperation.
Nordsee: Schiffslärm dominiert unter Wasser
Pressemitteilung, 31.01.2024, BSH
Erstmals haben die Nordseeanrainerstaaten den Unterwasserlärm gemeinsam an 19 Stationen gemessen und analysiert. Die Ergebnisse wurden in einer internationalen Studie unter der Leitung des Bundesamts für Seeschifffahrt und Hydrographie (BSH) veröffentlicht. Damit schaffen die Autorinnen und Autoren eine Referenz für zukünftige Messungen und Bewertungen. So können effektive Maßnahmen entwickelt werden, um den Unterwasserlärm in der Nordsee zu verringern.
„Für die Nordsee sind die Messungen einzigartig. Noch nie zuvor wurde der Unterwasserlärm in der gesamten Nordsee so lange und standardisiert erfasst“, betont BSH-Präsident Helge Heegewaldt. „So können wir die Belastungen insgesamt bewerten und gemeinsam daran arbeiten, dass die Nordsee leiser wird.“
Die Nordsee ist eines der am stärksten befahrenen Seegebiete und wird zunehmend für die Energiegewinnung genutzt. Das Problem: Der entstehende Unterwasserlärm kann das Leben im Meer beeinträchtigen. Messprogramme für Unterwasserlärm sind daher essentiell, um den aktuellen Status zu bestimmen und langfristige Trends zu überwachen.
Die Autorinnen und Autoren der Studie haben deshalb den Unterwasserlärm an den Stationen charakterisiert und miteinander verglichen. Dabei fanden sie heraus, dass die räumlichen Unterschiede weitaus größer sind als die zeitlichen Unterschiede. Wie kommt es dazu? Welche Ähnlichkeiten gibt es?
Wovon der Unterwasserlärm abhängt
Die Daten zeigen: Es ist am lautesten in der Nähe von Schifffahrtsrouten, wie im Ärmelkanal und in der südlichen Nordsee. Am leisesten ist es hingegen in tieferen Bereichen der nördlichen Nordsee mit weniger Schiffsverkehr, wie vor Schottland und Norwegen. An allen Stationen lagen die höchsten Messwerte im Frequenzbereich zwischen 100 und 500 Hz. Im Allgemeinen dominiert der Schiffslärm zwischen 40 Hz und 4 kHz. Der Unterwasserlärm durch Wind beeinflusst hohe Frequenzen über 1 kHz.
Anschließend haben die Autorinnen und Autoren die Geräuschkulissen an den Stationen verglichen. Dafür haben sie drei Frequenzbänder betrachtet, die den Hörbereich von Fischen und Schweinswalen sowie den Schiffslärm repräsentieren. So identifizierten sie Gruppen von Stationen mit ähnlichen Geräuschkulissen. Diese konnten sie durch die vorherrschenden Bedingungen an den Stationen erklären: Verkehrsaufkommen, Wassertiefe, Wind- und Strömungsverhältnisse.
Unterwasserlärm: Indikator für Zustand der Meere
Im Jahr 2008 benannte die Europäische Union den Unterwasserlärm als einen von elf Indikatoren, die den Zustand der Meere bestimmen. Um den Unterwasserlärm großräumig zu erfassen und zu bewerten, müssen direkte Messungen mit numerischen Modellen kombiniert werden. Die vorliegende Studie liefert dafür die Grundlage.
Die Ergebnisse stammen aus dem EU-Projekt JOMOPANS, das über das Interreg-Nordseeprogramm gefördert wurde. Das BSH hat die gemeinsamen Messungen und Auswertungen koordiniert sowie eigene Messungen an drei Stationen in der deutschen Bucht durchgeführt. Dies zeigt, dass eine regionale Zusammenarbeit möglich und notwendig ist, damit die Nordsee leiser wird.
Diese Pressemitteilung findet ihr beim BSH.
Die Studie macht deutlich: Die Nordsee ist unter Wasser alles andere als idyllisch – der ständige Schiffslärm stresst Meerestiere und stört ihre natürlichen Lebensweisen erheblich. Schweinswale, Fische und Bodenbewohner haben kaum eine Chance, sich in dieser akustischen Dauerbeschallung zu orientieren oder ungestört zu kommunizieren. Es wird Zeit, den Krach zu reduzieren, bevor die Nordsee endgültig zum akustischen Albtraum für ihre Bewohner wird.
Regionale Unterschiede der Erderwärmung entscheidend
Pressemitteilung, 05.12.2023, MARUM
Warum regionale Unterschiede der Erderwärmung entscheidend sind
Neue Datenanalyse ermöglicht es, Klimamodelle besser zu bewerten
Winzige Fossilien in Meeressedimenten zeigen, dass Klimamodelle die durchschnittliche Temperatur der Ozeane im letzten Hochglazial vor etwa 20.000 Jahren richtig berechnen, die simulierte räumliche Verteilung aber zu gleichmäßig ist und sie daher nur bedingt für künftige Klimaaussagen gilt. Ein neuer Ansatz zeigt nun, wie Klimamodellrechnungen besser überprüft werden können. Das Team um Dr. Lukas Jonkers vom MARUM – Zentrum für Marine Umweltwissenschaften und dem Fachbereich Geowissenschaften der Universität Bremen hat die Ergebnisse jetzt im Fachjournal Nature Geoscience veröffentlicht.
Mit Klimamodellen bilden Forschende das Klima der Vergangenheit nach, um zu entschlüsseln, wie und warum es sich verändert hat. Durch den menschengemachten Klimawandel ist es nicht möglich, Modelle eins zu eins auf die Zukunft zu übertragen, da sich die Randbedingungen verändert haben. „Wir müssen also die Vergangenheit simulieren, um die Modelle zu testen. Die Simulation des Klimas vom so genannten Last Glacial Maximum, kurz LGM, ist daher wichtig, um Klimamodelle zu bewerten“, sagt Erstautor Lukas Jonkers, das Hochglazial sei dabei ein gutes Testszenario. „Denn wie sich die Erde seitdem erwärmt hat, könnte etwa dem entsprechen, was wir künftig erwarten können.“
Bisherige Studien haben zwar übereinstimmend gezeigt, dass die Gesamtveränderung des globalen Klimas zwischen dem LGM und der Gegenwart zwischen den Modellen und den Paläoklima-Rekonstruktionen konsistent ist. Nicht ausreichend berücksichtigt wurden dabei aber das räumliche Temperaturmuster, das Ökosysteme und Lebensräume beeinflusst. Dazu gehört auch, wie sich Lebensräume auf den verschiedenen Breitengeraden verteilen.
Neuer Ansatz basiert auf einem grundlegenden makroökologischen Prinzip
Um zu prüfen, ob die Simulationen ein genaues Bild des vergangenen Klimas liefern, vergleichen die Forschenden sie mit auf Daten basierenden Rekonstruktionen. Beide Verfahren bergen einen gewissen Grad an Unsicherheit. Wenn beide voneinander abweichen – liegt es dann an der Simulation oder der Rekonstruktion? Damit Klimamodelle besser überprüft und bewertet werden können, haben Dr. Lukas Jonkers vom MARUM und seine Co-Autor:innen einen neuen Ansatz verfolgt, den sie jetzt im Fachjournal Nature Geoscience vorstellen. Dafür umgehen sie Unsicherheiten der traditionellen Rekonstruktionsmethoden und verwenden ein grundlegendes makroökologisches Prinzip. Das besagt, dass sich Artengemeinschaften umso mehr unterscheiden, je weiter sie voneinander entfernt sind. Ein Beispiel dafür sind etwa die Vegetationen in der Talsohle im Vergleich zur Bergspitze.
„Im marinen Bereich sehen wir einen größeren Rahmen dessen, nämlich wenn wir Spezies vom Äquator anschauen. Je weiter wir dann in Richtung Pol gehen, umso mehr verändern sich die Arten“, sagt Jonkers. „Im Ozean hängt diese abnehmende Ähnlichkeit stark mit der Temperatur zusammen. Würden die Klimamodelle also die Temperaturen der Vergangenheit korrekt simulieren, müssten wir beim Vergleich der simulierten Temperaturen mit den fossilen Artengemeinschaften dasselbe Muster feststellen.“ Forschende können also Daten zu Artengemeinschaften im Hochglazial nutzen, um zu beurteilen, ob die simulierte Temperatur aus dem LGM das gleiche Muster abnehmender Ähnlichkeit der Gemeinschaften reproduzieren kann, wie wir es heute sehen.
Für ihre Studie hat das internationale Team über 2.000 Artengemeinschaften planktonischer Foraminiferen von 647 Standorten untersucht. Planktonische Foraminiferen leben in den obersten Wasserschichten aller Ozeane. Sterben sie, sinken ihre kleinen Kalkgehäuse auf den Meeresgrund und bleiben dort als Mikrofossilien im Sediment erhalten.
Bei der Analyse der Daten für das LGM ist das Team auf sich unterscheidende Muster bei der Artenzusammenstellung gestoßen. Das werteten sie als Hinweis darauf, dass die simulierten Temperaturen nicht mit den tatsächlichen Eiszeit-Temperaturen übereinstimmen.
„Unsere Analyse deutet darauf hin, dass die simulierten Temperaturen im Nordatlantik zu warm und global zu gleichmäßig waren. Neue Simulationen mit schwächerer Ozeanzirkulation, die weniger Wärme in den Norden transportiert, und daraus resultierend einem kühleren Nordatlantik passte besser in das Muster“, erklärt Lukas Jonkers. Hintergrund dafür ist die Stärke der atlantischen meridionalen Umwälzzirkulation und Eis-Ozean-Wechselwirkungen. Die Forschenden kommen zu dem Ergebnis, dass die neue Methode Modellvergleiche sicherer macht. Die neuen Simulationen zeigen, dass die Modelle das Temperaturmuster während des letzten Hochglazials korrekt berechnen können. Laut Autor:innenteam deute das darauf hin, dass eine korrekte Vorhersage des räumlichen Temperaturmusters – wenn die richtigen Prozesse berücksichtigt werden – auch für die Zukunft möglich ist.
Mehr Gewicht für räumliche Auswirkungen des Klimawandels
„Der globale Klimawandel wird auch regional unterschiedliche Auswirkungen haben. Unsere Gesellschaft und die Ökosysteme hängen letztlich davon ab, was auf kleineren räumlichen Skalen, nämlich um uns herum geschieht“, schlussfolgert Jonkers. „Unsere Studie unterstreicht die Notwendigkeit, die räumlichen Auswirkungen des Klimawandels zu untersuchen. Dies ist wichtig, wenn wir über die Begrenzung der globalen Erwärmung auf 1,5 Grad sprechen, denn dieser Wert bezieht sich lediglich auf ein globales Mittel.“
Die Publikation erscheint im Rahmen der vom Bundesministerium für Bildung und Forschung (BMBF) finanzierten Klimamodellierungsinitiative PalMod. Hier arbeiten Forschende daran, das Klima der vergangenen 130.000 Jahre auf kleineren Zeitskalen zu entschlüsseln, um Aussagen für ein Klima der Zukunft treffen zu können. Ihr Ziel ist es, die Spannbreite der Modelle und der ihnen zugrundeliegenden Parameter zu verstehen und bessere Aussagen für die Zukunft zu treffen.
Die Studie ist das Ergebnis einer Zusammenarbeit zwischen Forschenden der Universität Bremen und der Universität Oldenburg im Rahmen des Exzellenzclusters „Der Ozeanboden – unerforschte Schnittstelle der Erde“. Beteiligt sind außerdem Wissenschaftler:innen des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar und Meeresforschung Potsdam und Bremerhaven sowie des Southern Marine Science and Engineering Guangdong Laboratory Zuhai (China) und der Oregon State University (USA).
Diese Pressemitteilung findet ihr beim MARUM.
Forschungsschiff Polarstern nimmt Kurs auf die Ostantarktis
Pressemitteilung, 29.11.2023, gemeinsame Pressemitteilung von AWI, GEOMAR, CAU
Forschungsschiff Polarstern nimmt Kurs auf die Ostantarktis
Vergangenheit, Gegenwart und Zukunft im Fokus wissenschaftlicher Expeditionen
[29. November 2023] Gestern Abend ist das Forschungsschiff Polarstern von Kapstadt aus zu einem besonderen Fahrtgebiet aufgebrochen: In der Ostantarktis stehen die Geschichte der Instabilität des dortigen Eisschildes und die Wechselwirkung mit der Ozeanzirkulation im Fokus zweier Expeditionen. Auf dem ersten etwa zweimonatigen Abschnitt unter Leitung des GEOMAR finden vor allem ozeanographische, geowissenschaftliche und biologische Arbeiten statt; der zweite wird von der Universität Kiel geleitet und hat einen geowissenschaftlichen Schwerpunkt, Forschende des Alfred-Wegener-Instituts sind an beiden Expeditionen beteiligt. Personalwechsel und Versorgung des Schiffes finden Anfang Februar in Hobart statt. Anlässlich dieses Erstanlaufs der Polarstern in einem australischen Hafen ist ein Austausch mit Vertretungen aus Wissenschaft und Politik geplant.
Der bis zu mehrere Kilometer dicke Eisschild der Ostantarktis speichert Wassermassen, die den Meeresspiegel auf Zeitskalen von Jahrhunderten um dutzende Meter ansteigen lassen können, wie in vergangenen Warmzeiten der Erdgeschichte bereits geschehen. Die Rückkopplungen zwischen Eis, Ozean und Atmosphäre sind in dieser riesigen und global bedeutenden Region jedoch noch zu wenig verstanden. Dieses fehlende Wissen resultiert in einer großen Unsicherheit darüber, mit welchem Tempo der Meeresspiegel im Zuge der menschengemachten globalen Erwärmung ansteigen könnte und wie sich die Fähigkeit des Südozeans verändert, Wärme und atmosphärisches Kohlendioxid (CO2) aufzunehmen. Um diese Unsicherheiten zu verringern, haben Fachleute mehrerer deutscher und internationaler Forschungsstandorte ein koordiniertes Programm entwickelt. Es besteht aus drei Polarstern-Expeditionen namens EASI-1, EASI-2 und EASI-3 (East Antarctic Ice Sheet Instabilities, Ostantarktische Eisschild-Instabilitäten). Die erste fand bereits Anfang 2022 unter Leitung des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar und Meeresforschung (AWI) statt. Die beiden nun startenden Ausfahrten unter Leitung des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und der Christian-Albrechts-Universität zu Kiel (CAU) vervollständigen das geplante wissenschaftliche Programm.
„Das wohl herausragendste Merkmal der EASI-2 Expedition ist, dass wir moderne Beobachtungen aus der Wassersäule eng mit unserem Wissen über frühere Zustände der Zirkulation des Südlichen Ozeans verknüpfen“, erklärt Expeditionsleiter Dr. Marcus Gutjahr. Der GEOMAR-Geochemiker weiter: „Dafür vermessen und beproben wir den Ozean entlang zweier Transekte, mit einem besonderen Fokus auf ostantarktische Küstenabschnitte, die bisher vom menschengemachten Klimawandel wenig betroffen waren. Wir untersuchen eine Vielzahl chemischer und physikalischer Eigenschaften des Meerwassers im offenen Ozean und antarktischen Gewässern bis hin zur Eisschelfkante. Mehrere dieser Parameter wurden in diesem Teil des Südlichen Ozeans noch nie erfasst.“ An denselben Stationen nimmt das Geologie-Team bis zu 25 Meter lange Sedimentkerne vom Meeresboden. Durch die Verknüpfung der Analysen der heutigen Meerwassereigenschaften mit Informationen, welche aus Sedimenten gewonnen werden können, erwartet das Team einen grundlegenden Einblick in die regionalen Umweltbedingungen vergangener Warm- und Kaltzeiten.
„Aus den marinen Sedimentkernen können wir Fragen zur Klima- und Meereisdynamik im Pleistozän beantworten – also bis zu 2,5 Millionen Jahre zurück in der Erdgeschichte“, sagt Vivian Sinnen. Die AWI-Doktorandin wird erstmals an einer Polarstern-Expedition in die Antarktis teilnehmen und ist Teil des Teams Marine Geologie, das beispielsweise aus biogeochemischen Merkmalen der Skelette von Kieselalgen (Diatomeen) Rückschlüsse auf die Temperaturen oder die Meereisausdehnung in der Vergangenheit zieht. Zum Geologie-Team gehört ebenfalls Dr. Lester Lembke-Jene. Er erläutert: „Diese Sedimente stellen eines der wichtigsten Klima-Archive dar, um Phasen natürlicher vergangener Klima-Erwärmungen im Südlichen Ozean zu rekonstruieren und die damit verbundenen Prozesse besser zu verstehen. Hierbei interessieren uns vor allem die mit diesen Wechseln eng verknüpften, tiefgreifenden physikalischen und biogeochemischen Veränderungen in den ozeanischen Frontensytemen und dem Antarktischen Zirkumpolarstrom, der größten Meeresströmung im Weltozean.“ Das Untersuchungsgebiet agiert als eine zentrale Schnittstelle für den Gas- und Wärmeaustausch zwischen dem tiefen Ozean und der Atmosphäre seit mehr als 30 Millionen Jahren, heute gehört sie u.a. zu den wichtigsten natürlichen Senken für anthropogene Treibhausgase und Wärme.
Die EASI-3-Expedition setzt den Schwerpunkt auf die Erfassung glazialer Strukturen auf dem Schelf und dem Kontinentalhang, zum Beispiel die fossilen Schleifspuren von Eismassen auf dem Meeresboden. Mit geophysikalischen Messungen können die Forschenden um Fahrtleiter Prof. Dr. Sebastian Krastel vom Institut für Geowissenschaften der CAU dabei noch weiter in die Erdgeschichte zurückblicken. Der Geophysiker erläutert: „Durch eine Kombination unterschiedlicher geophysikalische Systeme der Uni Kiel, des AWI und australischer Kolleginnen und Kollegen können wir Untergrundstrukturen in unterschiedlichen Tiefen mit bestmöglicher Auflösung abbilden. So können wir bis zu 1000 Meter in den Meeresboden hineinschauen und charakteristische Strukturen identifizieren, die es uns ermöglichen, verschiedene Zustände der Eisschilde in der Vergangenheit zu rekonstruieren.“ Basierend auf den geophysikalischen Messungen werden auch umfassende marin-geologische Arbeiten während der EASI-3-Expedition stattfinden. „Aus dem Arbeitsgebiet gibt es bisher sehr wenige Informationen zu den möglichen Steuerungsmechanismen von Eis-Instabilitäten, obwohl davon auszugehen ist, dass diese Region besonders sensitiv gegenüber dem zukünftigen Klimawandel reagieren wird. Das macht unsere disziplinübergreifenden Arbeiten so wertvoll, erläutert Prof. Dr. Julia Gottschalk von der Uni Kiel.
Die marinen Arbeiten auf beiden Expeditionen werden durch landgestützte Arbeiten eines internationalen Forschungsteams der Universität Köln, der Technischen Universität Dresden, sowie australischen KollegInnen abgerundet. So erlangen die Forschenden einen lückenlosen Anschluss an den antarktischen Kontinent.
Mit frischen Eindrücken von See oder Vorfreude auf die anstehende Expedition treffen einige der Polarstern-Expeditionsteilnehmenden Anfang Februar 2024 auf Kolleginnen und Kollegen aus der australischen Forschung. Im tasmanischen Hobart wird es im Rahmen eines feierlichen Empfangs einen Austausch mit wissenschaftlichen Institutionen und politischen Interessensvertretungen anlässlich des ersten Hafenanlaufs des Flaggschiffs der deutschen Polarforschung in Australien geben. Nach einem Zwischenstopp in Südafrika macht sich die Polarstern dann auf den Rücktransit und wird Mitte Mai in ihrem Heimathafen Bremerhaven zurückerwartet.
Die EASI-Expeditionen sind Teil der Programmorientierten Förderung (PoF) der Helmholtz-Gemeinschaft im Forschungsprogramm „Changing Earth – Sustaining our Future“, an dem AWI und GEOMAR beteiligt sind. Für die CAU liefern die Expeditionen wichtige Impulse für die Forschung innerhalb des universitären Forschungsschwerpunktes Kiel Marine Science (KMS). Die Forschenden werden u.a. über das Schwerpunktprogramm „Antarktisforschung“ der Deutschen Forschungsgemeinschaft (DFG) gefördert.
Diese Pressemitteilung findet ihr beim AWI.
Hälfte der Meeresschutzgebiete muss nutzungsfrei werden
Pressemitteilung, 16.11.2023, NABU
Die Hälfte der Meeresschutzgebiete muss nutzungsfrei werden
Strenger Schutz in Nord- und Ostsee: NABU macht Vorschlag, wie Artensterben und Lebensraumverlust aufgehalten werden kann
Berlin – Der NABU hat am 16. November den Umweltpolitikern der Ampel-Koalition und dem Meeresbeauftragten der Bundesregierung eigene Vorschläge für streng geschützte Flächen in den Meeresschutzgebieten der ausschließlichen Wirtschaftszone (AWZ) in der deutschen Nord- und Ostsee vorgestellt. Dazu hat sich die Bundesregierung im Koalitionsvertrag verpflichtet. Der Verband fordert, mehr als 50 Prozent der Schutzgebiete noch in dieser Legislatur frei von Fischerei, Schifffahrt und Rohstoffabbau zu stellen.
NABU-Präsident Jörg-Andreas Krüger: „Zwei Jahre nach ihrem Antritt muss die Bundesregierung die versprochene Meeresoffensive liefern. Die Naturkrise in Nord- und Ostsee lässt uns keine Zeit. Die jüngsten Zustandsberichte unserer Meere sind dramatisch. Ein Drittel der Arten steht auf der roten Liste. Mit unseren Karten für nutzungsfreie Flächen liegt ein Entwurf auf dem Tisch, mit dem Deutschland den Verpflichtungen der EU-Biodiversitätsstrategie gerecht werden und eine europäische Vorreiterrolle einnehmen kann.“
Die europäische Biodiversitätsstrategie fordert, dass 30 Prozent der Land- und Meeresfläche geschützt werden, ein Drittel davon streng. Im Koalitionsvertrag steht, dass zehn Prozent der deutschen AWZ frei von schädlichen Nutzungen sein müssen. Doch heute findet auch in Meeresschutzgebieten noch Grundschleppnetzfischerei statt, werden Sand und Kies abgebaut, führen Schifffahrtslinien hindurch. „Dort wo wir wertvolle Riffe haben, Schweinswale ihre Jungen zur Welt bringen, Seevögel Nahrung finden und die Biodiversität am größten ist, muss die industrielle Nutzung aufhören. Wir brauchen streng geschützte Flächen, um Artensterben und Lebensraumverluste vor unserer Küste zu stoppen“, fordert NABU-Meeresexperte Kim Detloff.
Die Vorschläge des NABU decken etwas mehr als die Hälfte der Meeresschutzgebiete in der der deutschen AWZ ab, das entspricht knapp 15 Prozent der AWZ der Nordsee und etwas mehr als acht Prozent der AWZ der Ostsee. Erstmals wird damit der Begriff „strenger Schutz“ greifbar, es werden konkrete Flächen beschrieben und notwendige Maßnahmen definiert. Unterstützt wird Deutschlands größter Naturschutzverband in seiner Forderung von mehr als 40.000 Menschen, die einen offenen Brief an Bundeskanzler Scholz unterzeichnet haben. „Wir appellieren an die Mitglieder des deutschen Bundestags und den Bundeskanzler persönlich, dem Bundesumweltministerium zu helfen, ambitionierte Flächenvorschläge zu entwickeln und umzusetzen. Die Natur kann nicht warten, und nirgendwo liegen Natur- und Klimaschutz so nah wie im Meer“, so Krüger.
Hintergrund:
Für seine Gebietsvorschläge hat der NABU aktuelle Monitoring-Daten von mehr als 20 geschützten Arten und Lebensräumen – darunter Riffe, Sandbänke und Schlickgründe, Schweinswale, Seetaucher, Trottellummen, Eisenten und weitere Meeresvögel – analysiert und die Flächen mit der größten Artendichte und ökologischen Funktion definiert. Dazu gehören 54 Prozent der Schutzgebiete in der AWZ der Nordsee (das entspricht 14,6 Prozent der AWZ und 10,1 Prozent der gesamten deutschen Nordsee). In der Ostsee sollen 52,3 Prozent der AWZ-Schutzgebiete streng geschützt werden (das entspricht 29,2 Prozent der AWZ und 8,4 Prozent der gesamten deutschen Ostsee). Diese Flächen gilt es besonders zu schützen. Nach Überzeugung des NABU braucht es hier neben völlig ungestörten Bereichen, sogenannten Nullnutzungsgebieten, auch zeitliche Schutz- und Zonierungskonzepte für die deutschen Meeresschutzgebiete in der AWZ und auch im Küstenmeer unter Verantwortung der Bundesländer. Einen wichtigen Beitrag könnte hier ein Nationalpark Ostsee leisten.
Erst Ende Oktober hat das Regionalabkommen HELCOM (Helsinki-Konvention) zum dritten Mal einen Bericht über den ökologischen Zustand der Ostsee (HOLAS III) veröffentlicht, nur sechs Wochen nach dem Quality Status Report des OSPAR-Übereinkommens zum Schutz der Nordsee und des Nordostatlantiks. Dabei haben die Mitgliedsstaaten der Konventionen im Vorfeld Analysen zur Biodiversität, Eutrophierung, Schadstoffeinträgen, Nutzungsdruck sowie wirtschaftlichen und sozialen Aspekten vorgenommen. Das Ergebnis ist alarmierend. Nahezu sämtliche Fisch- und Vogelarten sowie Meeressäugetiere sind weiterhin bedroht oder werden stark beeinträchtigt; ihre Lebensräume werden gestört oder gehen ganz verloren.
Diese Pressemitteilung findet ihr beim NABU.
Foraminiferen in versauernden Meeren
Wissenschaft fürs Wohnzimmer: Wie kann man im Meer leben, wenn es sauer wird?
Foraminiferen sind faszinierende Einzeller, die auf den Meeresböden der ganzen Welt leben und eine entscheidende Rolle für das Ökosystem Meer spielen – das wusste auch unser Gründer Onno Groß, der über Tiefseeforaminiferen promovierte. Da sie eine Kalkschale tragen, sind sie akut durch die Ozeanversauerung gefährdet: Die Abbildung zeigt die verschiedenen Auflösungsgrade der Art Elphidium crispum. Dr. Laurie M. Charrieau, Marine Geologin am Alfred-Wegener-Institut, nimmt uns in Folge 138 von Wissenschaft fürs Wohnzimmer mit auf eine Reise durch die Ozeane der Welt und erklärt, wie Foraminiferen mit dem Klimawandel und zunehmend saureren Meeren zurechtkommen. Antonia Ahme, die auch zu unserem DEEPWAVE-Team gehört, und ihre Kolleginnen vom AWI moderieren anschließend eine Fragerunde.
Die Folge „Wie kann man im Meer leben, wenn es sauer wird?“ findet ihr bei Wissenschaft fürs Wohnzimmer. Hier berichten jeden zweiten Donnerstag 20:30 Uhr live auf YouTube Wissenschaftler:innen des Alfred-Wegener-Instituts für Polar- und Meeresforschung (AWI) und Gäste anderer Institutionen in lockerer Atmosphäre über ihre aktuelle, waschechte und klimarelevante Forschung.
Unser Gründer Onno Groß hat im Jahr 1998 eine Doktorarbeit zum Thema „Untersuchungen zur Autökologie, Wanderung und Bioturbation lebender benthischer Tiefsee-Foraminiferen (Protozoa)“ veröffentlicht.
Wie Wissenschaftler:innen mit Hilfe von Foraminiferen vergangene Klimabedingungen auf der Erde rekonstruieren, könnt ihr euch in der kurzen Dokumentation „A Foram’s Tale“ von ScienceMedia angucken.
Wissenschaftler:innen haben außerdem die Artenvielfalt von Foraminiferen in den Tiefseegräben der Clarion-Clipperton-Zone (CCZ) (tiefer als 4000 Meter) untersucht und über 100 Arten fotografiert, genetisch sequenziert und viele bisher unbekannte Arten entdeckt.
Die Abbildung findet ihr in der Veröffentlichung „Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity“ von Dr. Laurie M. Charrieau: Charrieau, L. M., Filipsson, H. L., Nagai, Y., Kawada, S., Ljung, K., Kritzberg, E., & Toyofuku, T. (2018): Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity. Marine environmental research, 138, 36-45.
Zwischen arktischem Land und Meer
Pressemitteilung, 20.10.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Neuer Atlas dokumentiert das Auftauen des Permafrosts und seine Folgen
[20. Oktober 2023] Der Untergrund im hohen Norden der Erde verändert sich rasant. Typisch für weite Regionen der Arktis sind Böden, die im Sommer an der Oberfläche ein Stück weit auftauen, ansonsten aber das ganze Jahr hindurch gefroren bleiben. Doch die steigenden Temperaturen setzen diesem sogenannten Permafrost immer mehr zu. Welche Folgen hat das für das Klima, die Wirtschaft und die Menschen, die dort leben? Und wie kann man sich langfristig darauf einstellen? Solchen Fragen ist das vom Alfred-Wegener-Institut koordinierte EU-Projekt Nunataryuk in den letzten sechs Jahren nachgegangen. Die Erkenntnisse sind in den neuartigen „Arctic Permafrost Atlas“ eingeflossen, der am 20. Oktober online und kurz danach auch in gedruckter Form erscheint.
„Nunataryuk“. Viele der mehr als 150 beteiligten Wissenschaftlerinnen und Wissenschaftler dürften im Rahmen des nun beendeten Forschungsprojekts ein neues Wort gelernt haben. Der Name des Vorhabens stammt aus der im Nordwesten Kanadas gesprochenen Inuit-Sprache Inuvialuktun und bedeutet so viel wie „zwischen Land und Meer“. Er bezieht sich auf die Küsten des Nordpolarmeers – und damit genau auf die Regionen der Arktis, in denen sich die meisten menschlichen Aktivitäten konzentrieren. Wer dort lebt und arbeitet, ist mit Permafrost in all seinen Erscheinungsformen konfrontiert: Der gefrorene Boden prägt sowohl das Land als auch die Küste und den Meeresgrund. Und überall hat der Klimawandel schon seine Spuren hinterlassen.
„Der einst zuverlässig gefrorene Untergrund taut jetzt rund um die Welt auf“, berichtet Projekt-Koordinator Prof. Dr. Hugues Lantuit, Leiter der Arbeitsgruppe Permafrost-Küsten am Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) in Potsdam. Durch diese Prozesse aber wird das Erdreich weniger stabil. Oft sackt es zusammen, ganze Küstenabschnitte werden vom Meer davongerissen. „Das verändert die Ökosysteme, beschädigt die Infrastruktur und beeinflusst das Leben und die Arbeit der Menschen in der Arktis“, erklärt der Forscher. Doch auch global gesehen kann der Wandel im hohen Norden zu gefährlichen Entwicklungen führen. Denn der gefrorene Untergrund gilt als eines der größten Kohlenstoff-Lager der Erde. Wenn er auftaut, könnte er Treibhausgase freisetzen, die so wirksam sind wie 50 bis 200 Milliarden Tonnen Kohlendioxid. „Diese atemberaubende Menge könnte einen gewaltigen Effekt auf unser Klima haben“, betont Hugues Lantuit.
Es gibt also Gründe genug, die Vorgänge im Untergrund der Arktis genauer unter die Lupe zu nehmen. Denn nur so lässt sich einschätzen, welche Risiken die Veränderungen mit sich bringen und wie man diese minimieren kann. Seit dem Start des Projekts im November 2017 sind Fachleute von 26 Partner-Institutionen aus 13 Ländern diesen Fragen nachgegangen. Sie haben Permafrost-Forschung vor Ort mit Simulationen im Computer und mit sozio-ökonomischen Analysen kombiniert und dabei auch die Stimmen von Interessensgruppen aus der gesamten Arktis mit einbezogen. Die EU hat im Rahmen ihres Rahmenprogramms Horizon 2020 11,5 Millionen Euro in das Vorhaben investiert.
Die Ergebnisse beleuchten den gefrorenen Boden aus ganz unterschiedlichen Perspektiven. Wer die künftigen Veränderungen beobachten will, braucht zum Beispiel erst einmal einen Überblick über den heute noch vorhandenen Permafrost an Land und im Meer. Den liefert eine neue Karte, die das Zentrum für Umweltkommunikation GRID-Arendal in Norwegen aus Projekt-Daten erstellt hat. Zum ersten Mal lässt sich nun auch einschätzen, wie viele Menschen in den Eisschränken der Erde leben. „Es handelt sich dabei um rund fünf Millionen Leute“, sagt Co-Koordinator Dr. Paul Overduin vom AWI. Computermodelle zeigen allerdings, dass viele von ihnen im Jahr 2050 wohl keinen gefrorenen Boden mehr unter den Füßen haben werden: In fast der Hälfte der 1162 heutigen Siedlungen dürfte der Permafrost erst degenerieren und dann ganz verschwinden. Das würde das Leben von mehr als drei Millionen Menschen drastisch verändern. Ähnlich beunruhigende Nachrichten gibt es auch für die Wirtschaft. So droht bis 2050 mehr als die Hälfte der Flächen aufzutauen, auf denen Öl- und Gasförderung, Bergbau und ähnliche Aktivitäten stattfinden.
Doch nicht nur der instabiler werdende Untergrund und die damit verbundenen Schäden an Gebäuden und Straßen, Pipelines und anderer Infrastruktur sind ein Problem. „Im Permafrost sind auch Schadstoffe und Krankheitserreger eingefroren, die bei steigenden Temperaturen freigesetzt werden können“, erklärt Paul Overduin. Ein Beispiel ist das Milzbrand-Bakterium, das vor allem Huftiere befällt, aber auch Menschen infizieren kann. Seine äußerst robusten Sporen können im Boden Jahrzehnte lang überleben, bis das große Tauen sie wieder aktiv werden lässt. Möglicherweise erklärt das, warum sich in Sibirien in letzter Zeit so viele Rentiere mit Milzbrand infiziert haben. Im Rahmen des Projekts haben Fachleute ein neues und speziell auf die Verhältnisse in der Arktis abgestimmtes Modell zur Übertragung der Krankheit entwickelt. Es soll helfen zu verstehen, ob und wie man künftige Ausbrüche eindämmen kann.
Die Erkenntnisse aus Nunataryuk sind so weitreichend, dass sie einem möglichst breiten Publikum zugänglich gemacht werden sollen. Genau dazu ist der neue „Arctic Permafrost Atlas“ gedacht, den GRID-Arendal zusammen mit allen Projekt-Partnern herausgegeben hat. Auf 156 Seiten präsentiert er Karten und Illustrationen, Fotos und kurze Texte rund um den gefrorenen Boden und seine Veränderungen. Neun Portraits von Menschen, die im Permafrost leben und arbeiten, runden die visuelle Reise in die Arktis ab. Jede Seite ist dabei eine Warnung vor den dramatischen Folgen des Klimawandels, findet Hugues Lantuit: „Das Wissen in diesem Atlas ist ein dringender Aufruf zum Handeln.“
Den neuen Arctic Permafrost Atlas gibt es hier zum Download als PDF: https://nunataryuk.org/news/atlas
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Das Auftauen der Permafrostböden ist einer der großen Kipppunkte, die die Klimakrise vorantreiben. Eine in diesem Jahr veröffentlichte Studie betont, dass das Auftauen der Böden neben der Freisetzung von Methan, das wiederum die Klimakrise anheizt, auch zu einer massiven Belastung der Arktis mit industriellen Altlasten und Schadstoffen führen kann.
Arktischer Ozean im Wandel
Pressemitteilung, 29.09.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Forschungsschiff Polarstern kehrt am Wochenende in seinen Heimathafen Bremerhaven zurück
[29. September 2023] Nach erlebnis- und arbeitsreichen Monaten endet am kommenden Wochenende die Arktissaison mit der Polarstern-Expedition namens ArcWatch-1. Das knapp 100-köpfige Team aus Besatzung und Wissenschaft hat Dicke und Eigenschaften des Meereises vermessen, die Strömungen und chemischen Eigenschaften des Ozeans aufgezeichnet und das Leben im und unter dem Eis, im freien Wasser und am Boden der Tiefsee erforscht. Ihre Daten zeigen erhebliche Veränderungen im Vergleich zu vorangegangenen Expeditionen auf. Am 7. September 2023 erreichte die Polarstern den Nordpol, und am 20. September gab es den weltweit ersten Livestream eines ROV-Untereis-Tauchgangs aus der Zentralarktis.
Der Sommer des Jahres 2023 geht ein als der global heißeste Sommer seit Beginn der Wetteraufzeichnungen: die Gletscher schmelzen schneller denn je, riesige Waldbrände in Kanada und Sibirien hinterlassen ihre Spuren, das Meereis schmolz schon im Mai und Juni 2023 schneller als zuvor. Daher erwartete des Expeditionsteam besonders wenig Meereis während der Untersuchungen in der zentralen Arktis. Die ersten Ergebnisse waren überraschend: Das Meereis des zentralen Arktischen Ozeans schmolz im August und September nicht so weit ab wie erwartet, es war auch dicker als in den Jahren zuvor.
„Es fehlten die Schmelztümpel, die Sedimenteinschlüsse, die Presseisrücken, die sonst so charakteristisch für das arktische Meereis im Sommer sind. Das Eis war besonders flach und von unten stark aufgeschmolzen. Ungewöhnlich viel Schnee auf den Schollen hat dafür gesorgt, dass sie von Oberflächenschmelze geschützt waren und es direkt unter dem Eis nur wenig Licht gab“, berichtet AWI-Meereisphysiker Dr. Marcel Nicolaus. Er setzte mit seinem Team an den insgesamt neun Eisstationen einen Unterwasser-Roboter (Remotely Operated Vehicle, ROV) ein. Ein besonderes Highlight der Expedition war die live Übertragung eines solchen Tauchgangs auf dem AWI-Youtube Kanal am 20. September, der erste ROV-Untereis-Tauchgang, der live aus der Zentralarktis ins Internet übertragen und von mehreren hundert Menschen verfolgt wurde.
Der großräumige Einsatz des Messgerätes EM-Bird vom Helikopter der Polarstern sowie von parallelen Flugzeugkampagnen zeigte: Die Dicke des ebenen Meereises betrug auch Anfang September noch 1,2 Meter – mehr als im Sommer der MOSAiC-Expedition im Jahr 2020 oder zum größten Meereisminimum 2012. Dank Telekommunikation über neue Satelliten mit Polarabdeckung konnten die Daten der Expedition direkt in Modelle eingespeist werden. Meereisphysiker Dr. Thomas Krumpen erklärt die beobachtete Anomalie so: „Wo in den letzten Jahrzehnten die Schollen vorwiegend von den sibirischen Schelfen in das Eurasische Becken drifteten, kam das Eis dieses und auch letztes Jahr aus dem kanadischen Becken, ohne Kontakt zum flachen Schelf. Das ist ein ungewöhnlicher Verlauf der Transpolardrift.“ Die Ursache beruht vermutlich auf einem Phänomen von ungewöhnlich stabilen Tiefdruckgebieten, die den Sommer über das Eis auf dem sibirischem Schelf zusammen hielt und verknüpft war mit einer Zufuhr kalter Polarluft.
„Entsprechend haben wir kaum Eisalgen an der Unterseite des Meereises gefunden. Besonders Melosira arctica fehlte, die meterlange Ketten bilden kann und ein wichtiger Nährstofflieferant für das gesamte Ökosystem ist. Das Eis war dieses Jahr wie tot. Wegen der Abdunklung durch Schnee schwammen Algen aus dem Wasser auf und legten sich in einem Film unter das Eis, um noch etwas Licht abzubekommen“, berichtet die Leiterin der Expedition Prof. Dr. Antje Boetius, Direktorin des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). Veränderungen entdeckten auch die Ozeanographen in der obersten Meeresschicht, die salziger war als in den Jahren zuvor wegen der fehlenden Eisschmelze sowie geringerer Einträge des sibirischen Schelfwassers.
Der Vergleich mit den früheren Untersuchungsjahren 2012 und 2020 zeigte auch für das im Wasser treibende, planktonische Leben Unterschiede. Im August und September war die Algenblüte längst vorbei, es konnte sich auch keine Algenbiomasse unter dem Eis aufbauen. Stattdessen fanden die Forschenden Schwärme von Tieren wie Pfeilwürmer, Manteltiere, Eisamphipoden, Ruderfußkrebse, Flügelschnecken und Rippenquallen. Das Team um Co-Fahrtleiterin Dr. Christina Bienhold fand die Lebensgemeinschaften in der Tiefsee daher verändert vor: „Es sind dieses Jahr kaum Meereisalgen in die Tiefsee gesunken. Dennoch ist insgesamt die Aktivität der Lebewesen am Boden etwas im Vergleich zum Meereisminimum im Jahr 2012 gestiegen.“ Aufnahmen mit der Tiefseekamera zeigten, dass sich die Zusammensetzung der Gemeinschaft verändert hat. Der einstmals glatte Meeresboden wurde stark besiedelt und durchwühlt von Ringel- und Borstenwürmern, kriechenden Seeanemonen und Seegurken. „Es ist erstaunlich, wie schnell das arktische Leben auf Änderungen in der Meereisbedeckung reagiert,“ sagt Antje Boetius. Das Team konnte Proben aller Größenklassen von Lebewesen der arktischen Tiefsee gewinnen, um ihre Vielfalt und Verteilung sowie auch Veränderungen zu den vergangenen Jahrzehnten zu untersuchen.
Die Forschungen der Expedition ArcWatch-1 schlossen auch Meeresbodenkartierungen von bisher unbekannten Seebergen ein, von denen sich einer als Biodiversitäts-Hotspot entpuppte. Zudem gewannen die Chemiker an Bord große Mengen von Wasser- und Eisproben, um die Veränderung der Kohlenstoffpumpe in die Tiefsee zu erfassen und um nicht-abbaubare chemische Stoffe zu detektieren. Für ein europäisches Projekt bewerten sie die Verteilung von Schadstoffen in der Arktis. Das Polarstern-Team konnte zudem eine Reihe neuer Hightech-Instrumente wie Roboter, autonome Sensor- und Probennahme-Module, sowie hochauflösende Untereiskameras erfolgreich einsetzen. Sie bauten ein großes Netzwerk von Bojen auf und setzten neuartige Verankerungen für ganzjährige Untersuchungen ein. So werden sie weitere Daten über den Wandel des zentralen arktischen Ozeans erhalten, auch nachdem Polarstern nun aus der zentralen Arktis zurückkehrt.
Weitere Einblicke in die Expedition können Interessierte bereits zum Jahreswechsel bekommen: Eine Dokumentation, produziert von UFA Documentary, mit dem Arbeitstitel ARCWATCH – HOFFNUNG IM EIS wird am 29. Dezember um 21.45 Uhr im Ersten ausgestrahlt und in der ARD-Mediathek verfügbar sein. Die kommenden drei Wochen wird die Polarstern für standardmäßige Wartungs- und Reparaturarbeiten in der Bremerhavener Lloyd Werft verbringen, bevor sie Ende Oktober Richtung Antarktis aufbrechen wird.
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Der Wandel im arktischen Ozean zeigt sich nicht nur durch veränderte Artgemeinschaften, sondern auch durch die Veränderung der saisonalen Vertikalwanderung von Zooplankton als Folge des zunehmenden Meereisrückgangs.
Wie Spurenelemente die CO2-Speicherung im Ozean verändern
Pressemitteilung, 27.09.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Eisen und Mangan beeinflussen das Algenwachstum und damit auch den Kohlenstoff-Transport im Südpolarmeer
[27. September 2023] Der richtige Mix von Spurenelementen ist entscheidend für eine gesunde Ernährung. Diese Devise gilt nicht nur für Menschen, sondern auch für das Phytoplankton. Die winzigen Algen im Südpolarmeer haben als Kohlendioxid-Speicher maßgebliche Effekte auf das Weltklima. So zeigt eine neue Studie des Alfred-Wegener-Instituts (AWI) und der Universität Bremen einen interessanten Zusammenhang: Wenn das Phytoplankton gleichzeitig mehr Eisen und Mangan bekommt, verändert sich seine Lebensgemeinschaft. Die Algen können dann mehr CO2 binden und bilden mehr klebrige, kohlenstoffreiche Kolonien, die besser auf den Meeresgrund sinken. Dadurch holen sie den Kohlenstoff effizienter aus der Atmosphäre, berichtet das Forschungsteam im Fachjournal Current Biology.
Da das Südpolarmeer reich an Nährstoffen wie Nitrat und Phosphat ist, sollte man dort eigentlich auch ein üppiges Algenwachstum erwarten. Doch in den meisten Regionen gibt es erstaunlich wenig Phytoplankton. Schon länger ist bekannt, dass hinter dieser Wachstumsschwäche vor allem ein kräftiger Eisen-Mangel steckt, teilweise ist aber auch Mangan knapp. Ob das auch für das südliche Weddellmeer gilt, wusste bisher allerdings niemand. Nun aber haben Forschende des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) sowie der Universität Bremen nicht nur die Mengen beider Elemente in den abgelegenen und schwer erreichbaren Gewässern am 77. Breitengrad untersucht. Zum ersten Mal haben sie während der COSMUS-Expedition im Jahr 2021 auch getestet, welchen Einfluss beide Spurenmetalle auf die dortigen Algengemeinschaften haben.
Dabei hat sich herausgestellt, dass im Vergleich zu ihrer möglichen Photosynthese-Leistung die Algen im gesamten südlichen Weddellmeer erstaunlich schlecht wachsen und somit auch weniger Kohlenstoff zum Meeresgrund transportieren als eigentlich möglich wäre. Dieses Ergebnis passt zu der ebenfalls schlechten Versorgung mit Spurenelementen: „Tatsächlich haben wir überraschend geringe Konzentrationen von Eisen und Mangan gefunden“, berichtet Erst-Autorin Jenna Balaguer, deren Doktorarbeit von Scarlett Trimborn betreut und am AWI und der Universität Bremen durch das Schwerpunktprogramm Antarktisforschung von der Deutschen Forschungsgemeinschaft (DFG) gefördert wurde. „Für manche Phytoplankter scheinen beide Substanzen sehr knapp zu sein, während andere nur Eisen benötigen.“ Und das hat offenbar weitreichende Folgen.
Diese wurden deutlich, als die Gruppe Meerwasser aus der Region in Behälter füllte und dann entweder Eisen oder Mangan oder beides dazugab. „Dabei hat sich gezeigt, dass die Eisenversorgung tatsächlich nicht der einzige entscheidende Faktor ist“, sagt AWI-Forscher und Studienmitautor Florian Koch. „Erst durch die Kombination von Eisen und Mangan konnten wir das Wachstum der Algen so richtig ankurbeln.“ Damit aber nicht genug: Da die einzelnen Arten durchaus unterschiedliche Ansprüche an die Versorgung mit Spurenelementen haben, veränderte sich mit den Zugaben auch die Zusammensetzung der Lebensgemeinschaft.
Das aber ist nicht nur ökologisch interessant, sondern hat auch weitreichende Konsequenzen für das Kohlenstoffbudget der Erde und damit für das Klimagleichgewicht. Denn das Phytoplankton hat einen wichtigen Einfluss auf den Kohlenstoff-Transport im Meer. Sobald die grünen Winzlinge per Photosynthese Energie gewinnen, setzen sie nämlich nicht nur große Mengen Sauerstoff frei. Gleichzeitig nehmen sie auch das Treibhausgas Kohlendioxid auf und bauen den darin enthaltenen Kohlenstoff in ihre Zellen ein. Wenn sie dann absterben und auf den Meeresgrund sinken, nehmen sie diesen Kohlenstoff mit. Statt in der Atmosphäre für weiter steigende Temperaturen zu sorgen, wird er durch diese biologische Pumpe also in die Tiefsee exportiert.
Gerade die Vorgänge im Untersuchungsgebiet der Studie sind in dieser Hinsicht besonders interessant. Immerhin geht etwa ein Viertel des insgesamt von den Organismen des Südpolarmeers aufgenommenen Kohlenstoffs auf das Konto des Phytoplanktons, das südlich des 55. bis 60. Breitengrades im Weddellmeer treibt. „Zum ersten Mal haben wir deshalb auch untersucht, wie der Eisen- und Mangan-Mangel dort den Kohlenstoff-Export beeinflusst“, sagt Jenna Balaguer.
Tatsächlich zeigen die Experimente, dass schon relativ kleine Veränderungen in der Artenzusammensetzung einen unerwartet großen Effekt auf diesen Prozess haben können. Denn je nach Größe, Form und sonstigen Eigenheiten sinken manche Zellen schneller und häufiger auf den Meeresgrund als andere. So führte die Zugabe von Spurenelementen zu einem starken Wachstum der Alge Phaeocystis antarctica. Diese gesellige Art bildete größere und mehr kohlenstoffreiche Kolonien, die dann zusammen mit den örtlichen Kieselalgen auch besonders gut absanken. Reicherte das Forschungsteam das Wasser nur mit Eisen an, verdoppelte sich dadurch das Export-Potential für Kohlenstoff. Eine Kombination von Eisen und Mangan ließ es um das Vierfache ansteigen.
Was aber bedeutet das für die Zukunft des Südpolarmeeres? Momentan lässt sich laut dem Studienteam nicht genau vorhersagen, welche Phytoplankton-Arten vom höheren CO2-Gehalt profitieren werden und wieviel mehr CO2 der Ozean dann aufnehmen kann als heute. Allerdings zeigt die Studie klar, dass ein zusätzlicher Eintrag von Eisen und Mangan durch Eisschmelze und Sedimente das Algenwachstum drastisch ankurbeln und die biologische Kohlenstoffpumpe auf Hochtouren arbeiten lassen könnte. Was der Klimawandel tatsächlich bewirken wird, lässt sich nur mithilfe von Modellen einigermaßen abschätzen. Und die sollten die neuen Erkenntnisse nun unbedingt integrieren, schließen die AWI-Forschenden, denn die Auswirkungen von Mangan auf die Kohlenstoffpumpe hatten die Modelle bisher nicht auf der Rechnung.
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Die Originalpublikation „Iron and manganese availability drive primary production and carbon export in the Weddell Sea“ findet ihr bei Current Biology.
Das Bild zeigt eine großflächige Phytoplankton-Blüte im Sommer 2021 in der Barentssee, aufgenommen mit einem der Copernicus Sentinel-3 Satelliten.
Das Spurenelement Eisen, welches die Primärproduktion und damit die Aufnahme von CO2 fördert, kommt sowohl in den Kotballen von Krill als auch von Salpen vor. Forscher:innen haben herausgefunden, dass antarktisches Phytoplankton das Eisen im Kot von Salpen vergleichsweise besser aufnehmen kann.