Forschung
Was die Forschung untersucht und herausfindet, wird durch Wissenstransfer greifbar und verständlich.
Und ermöglicht so sinnvolles und effektives Handeln für die Meere .
Unterschätzte Gefahr und Ressource am Meeresgrund
Pressemitteilung, 05.09.2023, Senckenberg Gesellschaft für Naturforschung
Neues Dinoflagellaten-Bestimmungsbuch beleuchtet die Bedeutung der marinen Einzeller für Wissenschaft und Gesellschaft
Heute legt die Meeresbiologin Dr. Mona Hoppenrath von Senckenberg am Meer in Wilhelmshaven gemeinsam mit internationalen Kolleg*innen die zweite, erweiterte Auflage des weltweit umfassendsten Bestimmungsbuchs für marine, benthisch lebende Dinoflagellaten vor: „Marine benthic dinoflagellates – their relevance for science and society“. Neben der Beschreibung zahlreicher neuer Arten, erstmals auch anhand molekulargenetischer Daten, ordnet das Buch die weltweiten Gefahren durch die oftmals toxischen Einzeller ein – aber auch ihren Nutzen für die Wissenschaft und als potenzielle Nährstoff- und Energielieferanten.
Die mikroskopisch kleinen Dinoflagellaten sind in der breiten Öffentlichkeit kaum bekannt, dabei ist ihr Einfluss auf Natur und Mensch beträchtlich. Weltweit in Salz- und Süßgewässern verbreitet spielen die winzigen Einzeller eine wichtige Rolle in aquatischen Nahrungsnetzen – die meisten Arten als Teil des Planktons, die benthischen in den Sedimenten am Meeresgrund oder epiphytisch auf Algen, Seegras oder Korallen. „Einige Arten produzieren Toxine, die beim Menschen ernsthafte Vergiftungen hervorrufen können und auch für andere Meeresorganismen schädlich sind“, erläutert Dr. Mona Hoppenrath, Wissenschaftlerin bei Senckenberg am Meer in Wilhelmshaven und Erstautorin des Buchs. „Durch den Verzehr von Fisch und anderen Meeresfrüchten können etwa über die Nahrungskette angereicherte Giftstoffe von Gambierdiscus-Arten die Ciguatera-Krankheit auslösen, eine der häufigsten Fischvergiftungen.“ Eine Algenblüte der Gattung Ostreopsis wiederum brachte in den 1990er-Jahren Hunderte von Urlauber*innen an der ligurischen Küste ins Krankenhaus. „Als Folge des Klimawandels werden solche Fälle wahrscheinlich immer häufiger vorkommen“, ergänzt Hoppenrath.
Der vorliegende Band zeigt eindrucksvoll den Artenreichtum der marinen Einzeller, sein größter Teil ist der Taxonomie benthischer Dinoflagellaten in ihrer erstaunlichen Formenvielfalt gewidmet. 242 Arten in 63 Gattungen werden im Detail vorgestellt, illustriert mit mehr als 240 Farbabbildungen, etwa 250 elektronenmikroskopischen Aufnahmen und mehr als 330 Zeichnungen. Seit dem Vorgänger „Marine benthic dinoflagellates – unveiling their worldwide biodiversity“ sind 64 neue Arten, 20 neue Gattungen und 19 neue Kombinationen – also Umbenennungen – hinzugekommen. „Gleichzeitig zeigen wir sicherlich nur die ‚Spitze des Eisbergs‘“, so Hoppenrath, „Es ist davon auszugehen, dass neben den etwa 2.500 bekannten lebenden Dinoflagellaten-Arten viele weitere existieren, die noch nicht beschrieben sind!“ Parallel zur Neuauflage werden über die Website des „Centre of Excellence for Dinophyte Taxonomy“ (CEDiT) Bestimmungshilfen und Matrixschlüssel zur Gattungs- und Art-Bestimmung abrufbar sein: www.dinophyta.org/identification-keys.
Neu ergänzt ist ein Kapitel zur Relevanz der Dinoflagellaten für Wissenschaft und Gesellschaft, das die Gefahren durch die Einzeller, aber auch ihren möglichen Nutzen beleuchtet. „Dass beispielsweise einige Arten der Gattung Gambierdiscus über den Verzehr bestimmter tropischer und subtropischer Fische und Meeresfrüchte die lebensbedrohliche Ciguatera-Vergiftung auslösen können, wissen wir seit den 1970er-Jahren. Viele Küstenländer haben in der Folge Überwachungsprogramme eingeführt. Weltweit werden jährlich circa 20.000 bis 60.000 Fälle registriert“, berichtet Hoppenrath. „Dabei ist die Dunkelziffer groß: Schätzungsweise gibt es allein in den USA knapp 16.000 Vergiftungen im Jahr – möglicherweise werden weltweit nur 10 Prozent der Fälle den Gesundheitsbehörden gemeldet.“ Der fortschreitende Klimawandel scheint das Problem noch zu verstärken: Korallenbleichen infolge steigender Meerestemperaturen und andere Beeinträchtigungen von Korallen-Ökosystemen führen offenbar zu einem verstärkten Vorkommen von Gambierdiscus, weshalb der Weltklimarat davon ausgeht, dass Ciguatera-Vergiftungen weiter zunehmen werden. Gleichzeitig gibt es Hinweise, dass sich Gambierdiscus inzwischen auch in gemäßigte Regionen ausgebreitet hat.
Neben den gesundheitlichen Gefahren verursachen die toxischen Einzeller auch beträchtliche wirtschaftliche Schäden. In den USA entstehen durch Ciguatera schätzungsweise 17 Millionen US-Dollar Gesundheitskosten im Jahr. Von Einfuhrverboten für Riff-Fische infolge gemeldeter Vergiftungen werden insbesondere kleine tropische und subtropische Inselstaaten empfindlich getroffen, die stark von der Fischerei abhängig sind.
Auf der anderen Seite können Dinoflagellaten aber auch eine für den Menschen nützliche Ressource sein, beispielsweise als Lieferanten von wichtigen ungesättigten Fettsäuren für eine ausgewogene Ernährung. „Die planktische Art Crypthecodinium cohnii wurde bereits in der industriellen Produktion von Omega-3- Fettsäure als Nahrungsergänzungsmittel verwendet“, erzählt Hoppenrath. „Größtenteils sind die Möglichkeiten der industriellen Verwendung benthischer Dinoflagellaten, die Omega-3-Fettsäuren in großen Mengen produzieren, aber noch weitgehend unerforscht – hier gibt es großes Potenzial.“ Auch Biokraftstoffe könnten möglicherweise aus bestimmten Arten gewonnen werden. In der medizinischen Forschung haben sich einige der toxischen Verbindungen wiederum als vielversprechend für die Entwicklung von Therapeutika, beispielsweise in der Krebstherapie, gezeigt.
„Nicht zuletzt und überraschenderweise haben sich benthische Dinoflagellaten in der Naturwissenschaft für die evolutionäre Grundlagenforschung als sehr nützlich und wichtig erwiesen – zum Beispiel bei der Erforschung der Photosynthese und verschiedener Prozesse in Zellkernen. Es sind faszinierende Lebewesen, die wir aus vielen Gründen weiter erforschen müssen!“, schließt Hoppenrath.
Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.
Das Bild zeigt die Aufnahme eines Dinoflagellaten unter dem Rasterelektronenmikroskop der Gattung Gambierdiscus, die Toxine produziert, die auch für den Menschen gefährlich werden können und sich aufgrund der Klimakrise zunehmend in die gemäßigten Zonen ausbreiten.
Hier findet ihr das Buch „Marine benthic dinoflagellates – their relevance for science and society“ von Dr. Mona Hoppenrath.
Obwohl Dinoflagellaten Einzeller sind, habt ihr die Art Lingulodinium polyedrum vielleicht schonmal nachts am Meer gesehen…
Polarstern erreicht Nordpol
Pressemitteilung, 08.09.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Forschungseisbrecher zum siebten Mal am nördlichsten Punkt der Erde
[08. September 2023] Fünf Wochen nach dem Ablegen im norwegischen Tromsø erreicht das Forschungsschiff Polarstern des Alfred-Wegener-Instituts Station den nördlichsten Punkt der Erde. Das internationale Team von Forschenden untersucht auch hier die Kopplung zwischen Meereis, Ozean und seinem Leben bis in die Tiefsee. Bislang lieferte die am 3. August 2023 gestartete Expedition Arcwatch-1 einige überraschende Entdeckungen: So zeichnet sich 2023 durch ungewöhnliche Eisdrift aus, die die Lebensgemeinschaften unter dem Eis beeinflusst. Zudem hat das Team eine erstaunliche Artenvielfalt an einem bislang unkartierten Seeberg in 1500 Meter Wassertiefe unter dem Eis entdeckt.
Am 3. August 2023 ist der Forschungseisbrecher Polarstern im norwegischen Tromsø in See gestochen, um zwei Monate lang im Arktischen Ozean zu forschen. Ziel der aktuellen ArcWatch-1-Expedition ist es, die Biologie, Chemie und Physik des Meereises sowie die Auswirkungen des Meereis-Rückgangs auf das gesamte Ozeansystem von der Oberfläche bis in die Tiefsee zu untersuchen sowie in bisher unkartierte Regionen vorzudringen.
Nach einem kurzen Zwischenstopp auf Spitzbergen erreichte die Polarstern am 6. August die Eiskante bei 81,5° Nord und 17° Ost. In den darauffolgenden Wochen wurden Eisstationen zunächst entlang 85°N im Nansen- und Amundsen-Becken des Arktischen Ozeans durchgeführt, und dann nördlich entlang 130° Ost. Die Expedition erreichte dabei Anfang September die Region, in der die MOSAiC-Drift-Expedition in 2019 startete. Über tausende von Quadratkilometern wurden bisher 50 Bojen und autonome Messstationen verteilt. Zudem wurden mit dem vom Helikopter geschlepptem Messsystem „IceBird“ Eisdickenmessungen durchgeführt und parallel mit Fernerkundungsmethoden die Dynamik der Meereisbedeckung großflächig untersucht. Für die mehrtägigen Eisstationen legte das Schiff jeweils an einer Scholle an, Forschende gingen auf das Eis, bauten autonome Beobachtungsstationen auf, erforschten die Unterseite der Scholle mit einem Roboter und zogen Eiskerne, um das Leben im Netzwerk der winzigen Meereiskanäle zu untersuchen. Vom Schiff aus beprobten sie den Ozean unter dem Eis bis hinunter zum Meeresboden und setzten dafür verschiedene Tiefsee-Technologien wie das am AWI entwickelte Kamera- und Sonarsystem „Ocean Floor Observation and Bathymetry“ System (OFOBS) ein.
Letzteres lieferte am 21. August eines der vielen bisherigen Highlights der Expedition. Mithilfe von OFOBS konnten die AWI-Forschenden einen 2500 Meter hohen, bislang unkartierten Seeberg vermessen. Seine Basis liegt in 4000 Metern Tiefe, seine Spitze reicht bis 1500 Meter Tiefe unter die Meeresoberfläche. „Am Gipfel des Seebergs wimmelt es nur so vor Leben“, sagt Antje Boetius, Direktorin des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), die die Expedition leitet. „Wir fanden hier riesige, fast einen halben Meter große Schwämme, die über und über besiedelt waren mit Würmern, Krebsen und Weichkorallen. Für uns sehr überraschend stießen wir aber auch auf unzählige Fische, Aalmuttern und Scheibenbäuche, die für ihre Antifrost-Proteine bekannt sind. Die wunderschönen apricot-farbenen, fast einen halben Meter großen Seeanemonen waren ein fantastischer Anblick.“
Ein Ziel der Expedition sind zudem Vergleiche zu früheren Untersuchungen aus dem Jahr 2012 wie auch zu Untersuchungen der MOSAiC-Expedition. Im Jahr 2012 war das Team – ebenfalls unter Leitung der AWI-Direktorin Antje Boetius – mit Polarstern während der größten Meereisschmelze seit Beginn der Satelliten-Aufzeichnungen unterwegs. Über eine riesige Fläche fielen damals Meereislebewesen ins Wasser und sanken in die Tiefsee – besonders die fadenbildende endemische Meereisdiatomee Melosira arctica. Bei der Zersetzung der Algenteppiche durch Meeresbodenbakterien entstanden Sauerstoffminima im Meeresboden der Arktis. Das Team konnte nun elf Jahre später feststellen, dass das wiederholte Ausschmelzen der Meereisalgen in den vergangenen Jahren die Zusammensetzung der Meeresbodengemeinschaft verändert hat: ehemals dominante Arten wie Haarsterne sind verschwunden, dafür gibt es deutlich mehr Ringel- und Borstenwürmer sowie Seegurken. Allerdings fehlt dieses Jahr die Meereisalge Melosira arctica in großen Bereichen des Untersuchungsgebietes – sowohl im Eis wie am Meeresboden. Antje Boetius fasst zusammen: „An die Orte wiederzukehren, die wir erstmals 2012 untersuchten und die damals aufgezeichneten Phänomene des Klimawandels weiter zu verfolgen, ist für mich das wesentliche Ziel der Expedition. Wir sind sehr überrascht von der diesjährigen Veränderung in der Kopplung zwischen Meereis, Ozean und Meeresboden. Und froh, dass der weltweit heißeste Sommer 2023 nicht zu einer neuen Rekordschmelze geführt hat, da die zentrale Arktis durch eine besondere Wetterlage geschützt war.“
Ergebnisse der Meereisphysik erklären die Beobachtungen: So zeigte sich in diesem Jahr schon früh eine Anomalie in der Eisdrift, die dickeres Eis aus der westlichen zentralen Arktis nach Süden drückte. In den Regionen, wo 2012 und 2020 während MOSAiC junges Eis vom sibirischen Schelf mit vielen Algen gefunden wurde, dominierte dieses Jahr stark aufgeschmolzenes zweijähriges Eis aus dem kanadischen Becken. In den Sinkstofffallen und am Meeresboden war daher kaum abgesunkenes Material aus dem Eis zu finden. Auch die Ozeanographen bemerkten eine Anomalie: Die Schichtung des Meerwassers unter dem Eis war lokal durch Schmelzprozesse oder Vermischung durch starken Wind ausgeprägt, zeigte jedoch vergleichsweise hohen Salzgehalt. Grund ist wahrscheinlich eine geringere Schmelze und reduzierter Eintrag des Süßwasser-reichen Sibirischen Schelfmeeres. Direkt unter dem Eis begegneten den Planktologinnen und Planktologen an jeder Station auch andere Schwärme von Tieren – wie Manteltiere, Quallen, Flügelschnecken, Flohkrebse und Ruderfußkrebse. Anders als in 2012 wurde kaum Export von Biomasse in die Tiefsee beobachtet. Denn auch am Ende der Schmelzsaison gibt es noch eine ausgeprägte Schneeschicht auf dem Meereis. Diese macht das Eis und den Ozean darunter recht dunkel und führt sogar zum Aufsteigen von Phyto- und Zooplankton aus tieferen Wasserschichten an die hellere Unterseite des Eises. Zudem gibt es kaum Schmelztümpel auf dem Meereis, die sonst charakteristisch für den arktischen Sommer sind.
Auch die Vergleiche mit der Ausdehnung des Meereises während der MOSAiC-Drift-Expedition 2019-2020 lassen vermuten, dass 2023 über beiden Rekordminima von 2012 und 2020 liegen wird. Trotz des – seit Beginn von Wetterbeobachtungen – weltweit heißesten Sommers 2023 zeigt das Meereis der Arktis durchschnittlich sogar etwas höherer Dicken als in den vergangenen Jahren. Sowohl die Meereisphysikerinnen und Meereisphysiker als auch die Klimadynamikerinnen und Klimadynamiker erklären das Phänomen mit einem starken Tiefdruckeinfluss in der zentralen Arktis. Es bleibt noch abzuwarten, wie sich die Eisschmelze bis Mitte September zum Minimum der Eisausdehnung entwickeln wird. Die ersten Herbststürme transportieren gerade warme Luft in Richtung Arktis.
Gestern erreichte das AWI-Forschungsschiff planmäßig den Nordpol. Es ist das insgesamt siebte Mal, dass der Forschungseisbrecher Polarstern in seiner 42-jährigen Geschichte den nördlichsten Punkt der Erde erreicht. Zuletzt drang das Schiff am 18. August 2020 während der MOSAiC-Expedition mit dem Expeditionsleiter Markus Rex bis zum Nordpol vor. Gerade begannen die mehrtägigen Arbeiten der laufenden Expedition ArcWarch mit einem Tauchgang zum geographischen Pol bei 90°N in 4224 m Wassertiefe. Derzeit bauen die Wissenschaftlerinnen und Wissenschaftler ihre Observatorien auf der Eisscholle, im Ozean und am Meeresboden auf. Anschließend werden sie ihre Forschungsarbeiten entlang des 60. Breitengrads fortsetzen. Die Polarstern wird am 1. Oktober 2023 wieder in Bremerhaven zurückerwartet.
Dabei ist auch ein Kamerateam der UFA Documentary GmbH, das die Expedition filmisch begleitet. Geplant ist die Ausstrahlung der in Kooperation mit dem NDR entstehenden Fernseh-Dokumentation für den Jahreswechsel in der ARD. Bereits während der Expedition können Interessierte im Hörfunkprogramm von Radio Bremen Eindrücke von Bord gewinnen und die Expedition natürlich auch in der Polarstern-Web-App und auf den Social-Media-Kanälen des Alfred-Wegener-Instituts verfolgen.
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Am 03. August 2023 ist die Polarstern in Richtung Nordpol aufgebrochen, um im Rahmen von ArcWatch 1 die Biologie, Chemie und Physik des Meereises und die Auswirkungen der Klimakrise auf das arktische Ökosystem zu untersuchen.
Korallenriffe als ein Fenster in die Vergangenheit und Zukunft
Pressemitteilung, 31.08.2023, MARUM
Internationale Expedition vor der Küste von Hawai’i gestartet
Ein Blick zurück auf die Umweltveränderungen im Laufe der Erdgeschichte kann uns viel über die Zukunft verraten – insbesondere, wenn es um global und gesellschaftlich wichtige Themen wie den Meeresspiegel, den Klimawandel und die Gesundheit des Korallenriff-Ökosystems geht. Eine internationale wissenschaftliche Forschungsexpedition, die im Auftrag des International Ocean Discovery Program (IODP) durchgeführt wird, zielt darauf ab, die Klima- und Riffbedingungen der Vergangenheit vor der Küste von Hawai’i (USA) aufzuzeichnen. Die zweimonatige Forschungsexpedition wird Ende August den Hafen von Honolulu verlassen.
Korallenriffe reagieren sehr empfindlich auf den Meeresspiegel und andere Veränderungen der Umweltbedingungen. Als Fossilien halten sie eine Aufzeichnung vergangener Bedingungen über Hunderte, Tausende und Millionen Jahre der Erdgeschichte bereit. In den weltweiten Aufzeichnungen der vergangenen 500.000 Jahre gibt es jedoch Unterbrechungen, vor allem während Zeiten, in denen das Klima plötzlich sehr instabil wurde. IODP-Expedition 389 „Hawai’ian Drowned Reefs“ ( „Versunkene hawaiianische Riffe“) konzentriert sich auf dieses fehlende Glied. Wissenschaftliche Fahrtleitende sind Professor Christina Ravelo (Ocean Sciences Department an der University of California, Santa Cruz, USA) und Professor Jody Webster (School of Geosciences), der University of Sydney, Australien).
Prof. Christina Ravelo: „Die fossilen Riffe von Hawai’i sind Geschichtenerzähler der vergangenen Klima- und Ozeanveränderungen und der Reaktionen des Riffökosystems auf diese Veränderungen. Wir möchten diese Geschichten durch sorgfältige Untersuchung der Fossilien, die wir zu bergen hoffen, aufdecken und teilen.“
Prof. Jody Webster: „Wir hoffen, dass die in den fossilen Riffen aufgezeichneten Informationen den Wissenschaftlern helfen werden, bessere Vorhersagen über Geschwindigkeit und Ausmaß des Meeresspiegelanstiegs zu treffen, welche Auswirkungen die globale Erwärmung und Abkühlung auf kurzfristige Klimaphänomene wie Dürren, Überschwemmungen und marine Hitzewellen hat, und wie Korallenriff-Ökosysteme auf diese Veränderungen reagieren.“
Dr. Thomas Felis, Leiter der Arbeitsgruppe Korallen-Paläoklimatologie am MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen, ist Mitglied des Expeditionsteams. „Nach früheren Korallenriff-Bohrexpeditionen zum Great Barrier Reef und nach Tahiti, an denen ich beteiligt war, bietet sich nun in Hawai’i die einmalige Gelegenheit, noch viel weiter in die Vergangenheit zurückzugehen, hoffentlich bis zu einer halben Million Jahre“, sagt Thomas Felis. Er koordiniert auch das DFG-Schwerpunktprogramm „Tropische Klimavariabilität & Korallenriffe“ (SPP 2299), ein deutschlandweites Verbundprojekt, das ein besseres Verständnis der Klimavariabilität in den tropischen Ozeanen und ihrer Auswirkungen auf das Ökosystem der Korallenriffe in einer sich erwärmenden Welt zum Ziel hat. „Ich freue mich sehr, dass vier Forschende aus unserem Programm eingeladen wurden, zur IODP-Expedition 389 nach Hawai’i beizutragen“, so Felis.
Ziel der Expedition ist es, Bohrkerne aus Wassertiefen zwischen 134 und 1.155 Metern an zwanzig Stellen zu bergen. Auch wenn dies das erste Mal ist, dass in diesem Gebiet ein Ozeanbodenbohrgerät eingesetzt wird, sind die geplanten Lokationen gut untersucht. „Wir haben eine sehr gute Vorstellung davon, wie der Meeresboden vor der Küste von Hawai’iaussieht, Wissenschaftler:innen haben in den letzten vier Jahrzehnten mit Tauchbooten und ferngesteuerten Tauchrobotern umfangreichen Kartierungen mit Unterwassersonaren sowie Filmmaterial und Oberflächenproben gesammelt“, sagt Jody Webster. „Diese Informationen haben uns geholfen, die besten Lokationen für die sorgfältige Gewinnung der Kerne auszuwählen, die unser Verständnis der Geschichte des Riffsystems erheblich vertiefen werden“, fügt Christina Ravelo hinzu.
Die Universität von Hawai’i ist eine Partnerinstitution dieser Expedition und verfügt über eine lange Tradition in der Wissenschaft in den Bereichen Korallenriffe, Küstenphänomene und Küstengeologie. Hawai’ianische Wissenschaftler haben den Anstieg des Meeresspiegels und seine Auswirkungen untersucht und hervorgehoben, wie wichtig dieses Wissen für das Formulieren einer Strategie zur Eindämmung des Klimawandels und zur Stärkung der Resilienz in der Zukunft ist. Prof. Kenna Rubin, anorganische Geochemikerin an der University of Hawai’i at Manoa, Department of Earth Sciences, war von Anfang an an der Planung der Expedition beteiligt und wird eine wichtige Teilnehmerin sein.
Prof. Kenna Rubin: „Die detaillierten, hochauflösenden zeitlichen und zusammengesetzten Abfolgen, die wir von dieser Expedition erwarten, werden unser Wissen über die Reaktionen auf den Klimawandel erheblich erweitern und Forschenden helfen, die vulkanische Absenkungsgeschichte von ‚Big Island‘ besser zu verstehen.“ Die Auswirkungen dieser Forschung in Hawai’i werden zu bestehenden Studien über Meeresspiegelveränderungen beitragen, wie sie hier von Korallenriffen aufgezeichnet werden.“
Die wissenschaftlichen Ziele der Expedition zielen darauf ab, Fragen zu vier Hauptthemen zu beantworten:
- Das Ausmaß der Meeresspiegelveränderung in den letzten halben Million Jahren zu messen
- Warum sich Meeresspiegel und Klima im Laufe der Zeit ändern zu untersuchen
- Wie Korallenriffe auf abrupte Meeresspiegel- und Klimaveränderungen reagieren zu erforschen, und
- Die wissenschaftlichen Erkenntnisse über Wachstum und Absenkung von Hawai’i im Laufe der Zeit zu verbessern.
Die Planungsphase der Expedition umfasste intensive Umweltbeobachtungen und eine umfassende Risikobewertung.
Um das Material, das die Wissenschaftler:innen für ihre Analysen in den kommenden Jahren nutzen werden, zu gewinnen, wird während der Expedition auf dem Mehrzweckschiff MMA VALOUR ein Meeresbodenbohrgerät eingesetzt. Das Meeresbodenbohrgerät wird von einem renommierten Spezialisten der Geotechnikindustrie bereitgestellt und betrieben. Es wird auf den Meeresboden abgesenkt, um bis zu 110 Meter lange Bohrkerne aus dem Ozeanboden zu bergen.
Die MMA VALOUR ist ein vielseitiges Mehrzweck-Versorgungsschiff, das MMA Offshore gehört und von MMA Offshore betrieben wird, einem weltweit führenden Anbieter von See- und Unterwasserdienstleistungen. MMA mit Hauptsitz in Perth, Australien, engagiert sich für den Schutz der Meeresökosysteme der Welt und die Unterstützung wichtiger wissenschaftlicher Forschung in diesem Bereich.
An der Expedition werden 29 Wissenschaftler:innen aus Australien, Österreich, China, Dänemark, Frankreich, Deutschland, Indien, Japan, den Niederlanden, Großbritannien und den Vereinigten Staaten von Amerika teilnehmen. Zehn von ihnen werden an Bord der MMA VALOUR sein und am 31. August den Hafen von Honolulu verlassen. Die Offshore-Phase der Expedition endet am 31. Oktober. Alle Mitglieder der Wissenschaftsgruppe werden sich zur Onshore-Phase im Bremer IODP Bohrkernlager (BCR) am MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen (Deutschland) treffen um die Kerne zu öffnen, zu analysieren, zu beproben und die im Februar 2024 gesammelten Daten auszuwerten. „Das Treffen im Februar in Bremen bietet die Möglichkeit, dass alle Wissenschaftler:innen der internationalen und interdisziplinären Expedition erstmalig zusammen kommen und Kollaborationen intensiviert oder sogar erst initiiert werden“, sagt Dr. Ursula Röhl, Wissenschaftlerin am MARUM und Leiterin des Bremer Bohrkernlagers. „Im Moment ist ein Teil des Bremer Kernlager-Teams mit an Bord, um die Bohrkerne und Probenmaterial fachgerecht zu kuratieren und erste Messungen zu begleiten“, fügt sie weiter hinzu.
Die Kerne werden archiviert und der wissenschaftlichen Gemeinschaft nach einer einjährigen Moratoriums-Periode nach der Onshore-Phase der Expedition für weitere wissenschaftliche Forschungen zugänglich gemacht. Alle Expeditionsdaten werden öffentlich zugänglich sein und die daraus resultierenden Ergebnisse werden veröffentlicht.
Die Expedition wird vom European Consortium for Ocean Research Drilling (ECORD) im Rahmen des International Ocean Discovery Program (IODP) durchgeführt. IODP ist ein öffentlich finanziertes internationales Meeresforschungsprogramm, das von 21 Ländern unterstützt wird und die in Sedimenten und Gesteinen des Meeresbodens aufgezeichnete Erdgeschichte und -dynamik erforscht und die Umgebungen unter dem Meeresboden überwacht. Über mehrere Plattformen – eine einzigartige Funktion von IODP – untersuchen Wissenschaftler:innen die tiefe Biosphäre und den Ozean unter dem Meeresboden, Umweltveränderungen, Prozesse und Auswirkungen sowie Zyklen und Dynamik der festen Erde.
Der ECORD Science Operator verfügt über große Erfahrung in der Arbeit mit sensiblen Ökosystemen wie Korallenriffen, nachdem See-Expeditionen bereits zum Great Barrier Reef (Australien, 2010) und nach Tahiti (2005) durchgeführt wurden.
Diese Pressemitteilung findet ihr beim MARUM.
Besonders gefährdet sind die artenreichen Riffökosysteme durch Extremwetterereignisse wie Zyklone und Hitzewellen, die aufgrund der Klimakrise immer häufiger und mit größerer Intensität auftreten.
Im Jahr 2022 hat sich DEEPWAVE für sein Filmfestival in Bremen mit dem 15. Internationalen Korallenriff-Symposium (ICRS), der größten Konferenz für Korallenforscher:innen zusammengetan und das Filmfestival „Saving Corals“ auf die Beine gestellt.
Meereisrückgang lässt Zooplankton künftig länger in der Tiefe bleiben
Pressemitteilung, 28.08.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Neue Studie zeigt: Klimawandel verändert saisonale Vertikalwanderung von Zooplankton in der Arktis
[28. August 2023] Sonnenlicht kann wegen der zunehmenden Meereisschmelze in der Arktis immer tiefer in den Ozean eindringen. Weil sich das Zooplankton im Meer an den Lichtverhältnissen orientiert, verändert sich dadurch auch sein Verhalten – vor allem dabei der Auf- und Abstieg der winzigen Tiere innerhalb der Wassersäule. Wie ein internationales Forschungsteam unter Leitung des Alfred-Wegener-Instituts nun zeigt, könnte dies in Zukunft zu häufigeren Hungerphasen beim Zooplankton und zu negativen Effekten bis hin zu Robben und Walen führen. Die Studie ist im Fachmagazin Nature Climate Change erschienen.
Ausdehnung und Dicke des Meereises in der Arktis schwinden in Folge des menschengemachten Klimawandels deutlich. So schrumpft die durchschnittliche Fläche des Eises derzeit um etwa 13 Prozent pro Dekade. Schon 2030 – so zeigen es aktuelle Studien und Modellrechnungen – könnte der Nordpol im Sommer erstmals eisfrei sein. Die physikalischen Umweltbedingungen für das Leben im Nordpolarmeer ändern sich dadurch ebenso deutlich. Das Sonnenlicht etwa kann bei schrumpfender und dünnerer Eisdecke viel tiefer in das Wasser des Ozeans eindringen. In der Folge kann etwa die Primärproduktion – also das Wachstum – von Mikroalgen in Wasser und Eis unter bestimmten Bedingungen stark ansteigen. Wie sich die veränderten Lichtbedingungen auf höhere trophische Ebenen der Nahrungskette – wie beispielsweise das sich unter anderem von Mikroalgen ernährende Zooplankton – auswirken, ist bislang noch nicht gut verstanden. Ein internationales Forschungsteam um Dr. Hauke Flores vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) hat nun einen wichtigen wissenschaftlichen Baustein für ein besseres Verständnis geliefert.
„In den Ozeanen findet jeden Tag die gewaltigste synchrone Massenbewegung von Organismen auf dem Planeten statt“, sagt Hauke Flores. „Und das ist die tägliche Wanderung des Zooplanktons, zu dem etwa die winzigen Copepoden, auch bekannt als Ruderfußkrebse, und der Krill zählen. Nachts kommt das Zooplankton nah an die Wasseroberfläche, um zu fressen. Tagsüber wandert es wieder in die Tiefe, um sich vor Fressfeinden zu schützen. Einzelne Organismen des Zooplanktons sind zwar winzig, in der Summe aber ergibt sich so eine enorme tägliche Vertikalbewegung von Biomasse in der Wassersäule. In den Polargebieten sieht diese vertikale Wanderung allerdings anders aus. Sie ist hier saisonal, das heißt, dass das Zooplankton einem jahreszeitlichen Zyklus folgt. In der monatelangen Helligkeit des Polartags im Sommer bleibt das Zooplankton dauerhaft in größeren Tiefen, in der monatelangen Dunkelheit der Polarnacht im Winter kommt ein Teil des Zooplanktons dann dauerhaft in das oberflächennahe Wasser direkt unter dem Eis.“
Ganz wesentlich bestimmt werden sowohl die tägliche Wanderung in niedrigen Breiten als auch die saisonale Wanderung in den Polargebieten vom Sonnenlicht. Die winzigen Tiere mögen es meist dämmrig. Sie bleiben gern unterhalb einer bestimmten Lichtintensität (kritisches Isolumen), die meist sehr niedrig ist und weit im dunklen Dämmerlichtbereich liegt. Wenn sich im Laufe des Tages oder der Jahreszeiten die Sonnenlichtintensität ändert, folgt das Zooplankton dem Isolumen, was letztlich dann zum Auf- und Absteigen in der Wassersäule führt. „Speziell im Bereich der oberen 20 Meter Wassersäule direkt unter dem Meereis fehlten bislang Daten zum Zooplankton“, erläutert Hauke Flores. „Genau dieser schwer für Messungen erreichbare Bereich ist aber der spannendste, weil genau hier im und unter dem Eis die Mikroalgen wachsen, von denen sich das Zooplankton ernährt.“ Um hier zu messen, konstruierte das Team ein autonomes biophysikalisches Messobservatorium, das sie am Ende der MOSAiC-Expedition des AWI-Forschungseisbrechers Polarstern im September 2020 unter dem Eis verankerten. Das Gerät konnte hier – fernab jeder Lichtverschmutzung durch menschliche Aktivitäten – kontinuierlich die Lichtintensität unter dem Eis und die Bewegungen des Zooplanktons messen.
„Im Ergebnis konnten wir ein sehr niedriges kritisches Isolumen für das Zooplankton von 0,00024 Watt/Quadratmeter bestimmen“, sagt der AWI-Forscher. „Diesen Wert haben wir dann in unsere Computermodelle integriert, die das Meereissystem simulieren. So haben wir dann für verschiedene Klimaszenarien berechnet, wie sich die Tiefe dieses Isolumens bis zur Mitte dieses Jahrhunderts verändert, wenn das Meereis in Folge des fortschreitenden Klimawandels immer dünner wird.“ Dabei zeigte sich, dass das kritische Isolumen wegen der immer weiter abnehmenden Eisdicke immer früher im Jahr in größere Tiefen absinkt und immer später im Jahr wieder die Oberflächenschicht erreicht. Da das Zooplankton grundsätzlich unterhalb des kritischen Isolumens bleibt, wird es dieser Bewegung folgen. Deshalb hält es sich in den Zukunftsszenarien immer länger in größeren Tiefen auf und seine Zeit im Winter unter dem Eis wird immer kürzer.
„Künftig wird sich in einem wärmeren Klima das Eis im Herbst später bilden, was zu einer geringeren Eisalgenproduktion führt“, erklärt Hauke Flores. „In Kombination mit dem späteren Aufstieg kann das beim Zooplankton im Winter häufiger zu Nahrungsmangel führen. Im Gegenzug kann ein früherer Abstieg des Zooplanktons im Frühjahr eine Gefährdung für tiefer lebende Jungstadien von ökologisch wichtigen Zooplanktonarten bewirken, die dann vermehrt von den ausgewachsenen Tieren gefressen werden könnten.“
„Insgesamt zeigt unsere Studie einen bisher nicht beachteten Mechanismus auf, über den sich die Überlebenschancen des Zooplanktons in der Arktis in naher Zukunft weiter verschlechtern könnten“, sagt der AWI-Forscher. „Dies hätte fatale Auswirkungen auf das ganze Ökosystem bis hin zu Robben, Walen und Eisbären. Unsere Modellsimulationen zeigen aber auch, dass sich die Vertikalwanderung bei Einhaltung des 1,5 Grad-Ziels wesentlich weniger verschiebt als bei einem ungebremsten Fortschreiten der Treibhausgasemissionen. Deswegen ist für das arktische Ökosystem jedes Zehntel Grad weniger menschengemachte Erwärmung von entscheidender Bedeutung.“
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Die Originalpublikation „Sea-ice decline makes zooplankton stay deeper for longer“ findet ihr bei Nature Climate Change.
Die Umweltveränderungen durch die Klimakrise bedrohen das arktische Ökosystem auf vielen verschiedenen, zusammenhängenden Ebenen. Diese werden gerade auf der Polarstern-Expedition ArcWatch 1 untersucht. Auch die Polardorschbestände werden durch den Rückgang der Meereisbedeckung erheblich negativ beeinflusst.
Wissenschaftler:innen entdecken ein neues Ökosystem unter hydrothermalen Schloten
Die Tiefsee ist eine weithin unbekannte Welt für uns. Unbekannter als der Mond. Nur 5% der Tiefsee gelten als erforscht. Viele systemische Zusammenhänge sind noch nicht verstanden und etliche Arten noch nicht entdeckt. Auf ein weiteres Puzzleteil ist nun ein internationales Forschungsteam um die Meeresbiologin Monika Bright von der Universität Wien gestoßen. Sie haben ein gänzlich neues unterirdisches Ökosystem gefunden– in Hohlräumen unter Hydrothermalquellen. Damit bilden Hydrothermalquellen nicht nur ein Ökosystem an ihrer jeweiligen Oberfläche, auch in der Erdkruste unter den Schloten wurden Schnecken, Würmer und chemosynthetische Bakterien entdeckt, die ein eigenes Ökosystem bilden. Dabei scheinen die oberirdischen und unterirdischen Lebensräume an den Quellen aufeinander abgestimmt zu sein, wobei weitere Forschungsergebnisse noch etwas mehr Zeit benötigen.
Was diese Entdeckung aber bereits jetzt für uns bedeutet, zeigt sich, wenn wir über unseren Umgang mit den Meeren nachdenken. Nicht nur die Erderwärmung, sich anreicherndes Plastik oder anderer abgekippter Müll und Abwässer stören das größte Ökosystem der Erde – die Tiefsee. Obwohl wir noch so wenig wissen und auch noch nicht im mindesten verstanden haben, wie die vielen kleinen Ökosysteme zum größten Ökosystem zusammenwirken, planen Staaten und Unternehmen seit Jahren massive Eingriffe. Der Tiefseebergbau ist hier wohl das prägnanteste Beispiel. Ohne zu wissen, was wir zerstören, und im Bewusstsein, dass der Raubbau am Meeresboden irreversible Schäden für das gesamte Ökosystem bedeutet und damit auch ganz direkt uns betrifft, wird die Entwicklung des Tiefseebergbaus weiterhin vorangetrieben. Die Funde des internationalen Forschungsteams zeigen uns eines ganz deutlich: die Tiefsee kann uns noch vieles an Schätzen offenbaren – diese liegen jedoch nicht in Knollenform am Meeresgrund. Damit solche Puzzlesteine wie von diesem Forscherteam auch auf weiteren Expeditionen gefunden und in das Bild vom Ökosystem Tiefsee eingefügt werden können, muss das Vorsorgeprinzip und der Schutz der Meere oberstes Gebot sein.
Die zugehörige Pressemitteilung „Wissenschafter*innen entdecken ein neues Ökosystem unter hydrothermalen Schloten“ vom 08.08.2023 findet ihr bei der Universität Wien.
In den unbekannten Welten der Tiefsee werden immer wieder neue Ökosysteme und Arten entdeckt. Erst kürzlich wurde in der Clarion-Clipperton-Zone eine gigantische Artenvielfalt von über 5000 Arten gefunden, von denen bisher über 90% noch nicht wissenschaftlich beschrieben sind und nur in dieser Region vorkommen.
ArcWatch 1: Augenzeugen des Arktischen Wandels
Pressemitteilung, 01.08.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
AWI-Direktorin Antje Boetius leitet Polarstern-Expedition in die Zentralarktis
[01. August 2023] Am Donnerstag, den 3. August 2023 soll das Forschungsschiff Polarstern vom norwegischen Tromsø aus in Richtung Nordpol starten. Zwei Monate lang werden gut fünfzig wissenschaftliche Expeditionsteilnehmende die Arktis im Wandel erforschen, während die Meereisausdehnung im September ihr jährliches Minimum erreichen wird. Sie erkunden die Biologie, Chemie und Physik des Meereises sowie die Auswirkungen des Meereis-Rückgangs auf das gesamte Ozeansystem von der Oberfläche bis in die Tiefsee. Vor elf Jahren war Antje Boetius beim bisher größten Meereisminumum der Arktis und seinen Folgen für das Leben in der Tiefsee dabei. Jetzt kehrt sie mit ihrem Team zurück, um den heutigen Zustand der Arktis zu vergleichen – auch mit den Daten der MOSAiC-Expedition 2019/20.
„Ich bin sehr gespannt darauf zu sehen, wie sich das Meereis und das Leben im Ozean in der letzten Dekade verändert haben“, sagt Antje Boetius. „Im Jahr 2012 waren wir während der bisher geringsten dokumentierten sommerlichen Meereisausdehnung vor Ort und konnten erhebliche Auswirkungen auf das gesamte Ökosystem des zentralen Arktischen Ozeans feststellen, bis in über vier Kilometer Wassertiefe“, erläutert die Direktorin des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). „Aktuell beobachte ich die Meereissituation auf www.meereisportal.de besonders intensiv. Noch wissen wir nicht, ob ein neues Minimum erreicht wird, angesichts des global heißen Jahres 2023 und während in der Antarktis das Meereis ein Rekordtief zeigt.
Der Leiter des Team Meereisphysik und MOSAiC-Experte Dr. Marcel Nicolaus berichtet: „Das Eis erstreckt sich zurzeit mit knapp 7,5 Millionen Quadratkilometern über eine ähnliche Fläche wie in den beiden vergangenen Jahren. Damit gibt es noch etwa eine Million Quadratkilometer mehr Eis als im Jahr 2012. Die sommerliche Schmelze ist aber in vollem Gange, und vor allem der Wind wird in den kommenden Wochen bestimmen, wie sich das poröse, brüchige Eis weiter verteilt.“
Wie sich die Beschaffenheit des Meereises verändert, untersucht das Expeditionsteam vor Ort detailliert: Mit Helikopter-geschleppten Sensoren wird die Dicke des Eises vermessen, Eisbohrkerne erlauben die Analyse der Meereisbeschaffenheit sowie die Untersuchung im Eis lebender Algen. Ein Unterwasserroboter misst, wie viel Licht durch das Eis in den Ozean gelangt, wenn seine Oberfläche noch von Schnee oder bereits von Schmelzwassertümpeln bedeckt ist. Das Licht steht Kleinstalgen (Phytoplankton) als Energiequelle für die Photosynthese zur Verfügung, die in den oberen Wasserschichten leben. Was mit dem von ihnen gebundenen Kohlenstoff weiter passiert, wird (mikro-)biologisch, chemisch und physikalisch von der Wasseroberfläche bis in den Tiefseeboden erforscht. Die Planktologen an Bord wollen den Weg des Lebens direkt unter dem Eis bis in die Tiefsee verfolgen, dazu bringen sie verschiedene Kamerasysteme aus sowie autonome Probennehmer.
Für diese Arbeiten sind mehrere sogenannte Eisstationen geplant: „Das Schiff legt an eine Scholle an, dann gehen die Eisforscher auf die Scholle, wir setzen verschiedene Roboter und Freifallgeräte aus und parallel schauen wir mit den Zoologinnen die Lebewesen am Grund an, über 4000 Meter tiefer. So erkennen wir Zusammenhänge in allen Stockwerken des Ozeans vom Meereis bis zum Meeresboden“, erklärt Antje Boetius. Dabei kehrt das Team für vergleichende Untersuchungen in den gleichen Arbeitsgebieten wie im Jahr 2012 zurück: in die besonders produktive Eisrandzone und Regionen mit vielleicht noch immer mehrjähriger Eisbedeckung in der zentralen Arktis. Für die Arbeiten werden eine Reihe bewährter, aber auch neuer Technologien eingesetzt, beispielsweise Landersysteme, Tiefsee-Crawler und das am AWI entwickelte Ocean Floor Observation and Bathymetry System (OFOBS). Die Rückkehr erfolgt nach der sommerlichen Eisschmelze, wenn die herbstliche Meereisbildung beginnt.
Unter den Teilnehmenden ist auch ein Kamerateam der UFA Documentary GmbH, das die Expedition filmisch begleitet. Geplant ist die Ausstrahlung der in Kooperation mit dem NDR entstehenden Fernseh-Dokumentation für den Jahreswechsel in der ARD. Bereits während der Expedition können Interessierte im Hörfunkprogramm von Radio Bremen Eindrücke von Bord gewinnen und die Expedition natürlich auch in der Polarstern-App und auf den Social-Media-Kanälen des Alfred-Wegener-Instituts verfolgen. Planmäßig soll die Polarstern am 1. Oktober in ihren Heimathafen Bremerhaven zurückkehren.
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Am 03. August 2023 sind die Wissenschaftler:innen mit der Polarstern aufgebrochen. In dem digitalen Logbuch zur Expedition ArcWatch 1 könnt ihr die aktuelle Route mitverfolgen und bekommt jeden Tag spannende Einblicke in die wissenschaftlichen Arbeiten an und unter Deck – sowie auf und unter dem Eis.
Über die MOSAiC Expedition 2019/2020 – die größte Arktis-Mission aller Zeiten – könnt ihr hier einen Podcast anhören. Im Interview mit DEEPWAVE spricht Antje Boetius, Direktorin des AWI, über ihre Tauchfahrt in die Tiefsee und warum der Schutz der Meere uns alle etwas angeht.
Tiefseegraben: Müllhalde am Meeresgrund
Pressemitteilung, 13.07.2023, Senckenberg Gesellschaft für Naturforschung
Plastikmüll in einer Tiefe von 9600 Metern gefunden
Ein Team von Forscher*innen des Senckenberg Forschungsinstituts und Naturmuseums Frankfurt, der Universität Basel und des Alfred-Wegener-Instituts, Helmholtz-Zentrums für Polar- und Meeresforschung, haben die aktuell umfangreichste Untersuchung von (Makro-)Plastikmüll in einer Tiefe von bis zu 9600 Metern vollendet. In ihrer im Fachjournal „Environmental Pollution“ erschienenen Studie analysierten die Forschenden die Anzahl, das Material und die Art der Plastikabfälle im pazifischen Kurilen-Kamtschatka-Tiefseegraben. Sie zeigen, dass die meisten Plastiküberreste aus dem regionalen Seeverkehr und der Fischerei stammen. Das Team warnt, dass Tiefseegräben zu „Müllhalden der Meere“ werden könnten.
Spätestens seitdem im Scheinwerferlicht eines Tauchbootes 2018 eine Einkaufstüte in 11.000 Metern Tiefe des Mariengrabens auftauchte, ist das Vorhandensein von Plastikmüll in der Tiefsee unbestreitbar. „Auch wenn es mittlerweile ein zunehmendes Bewusstsein für das Plastik-Problem gibt, ist die weltweit produzierte Kunststoffmenge in den letzten 70 Jahren sehr stark gestiegen – allein im Jahr 2021 wurden 391 Millionen Tonnen hergestellt“, erzählt Dr. Serena Abel, aktuell Postdoktorandin an der Universität Basel und spricht weiter: „Die Vernetzung der Ozeane durch Meeresströmungen in Verbindung mit der Transportfähigkeit von schwimmfähigem Kunststoff macht die Plastikverschmutzung zu einem globalen Problem. Vor allem in abyssalen und hadalen Tiefen, wo die Hauptabbaufaktoren wie Photodegradation, das heißt die Veränderung unter dem Einfluss von Sonnenlicht, und Welleneinwirkung fehlen, sammelt sich Plastik an und bleibt lange – bis zu mehreren Hundert Jahren – bestehen. Jüngste Aufzeichnungen von Tiefseegräben zeigen die Allgegenwärtigkeit des menschlichen Fußabdrucks auch an Orten, die für uns Menschen unzugänglich sind.“
Die wissenschaftliche Mitarbeiterin hat in ihrer neuen Studie gemeinsam mit der Senckenberg-Meeresforscherin Prof. Dr. Angelika Brandt und Kolleg*innen des Alfred-Wegener-Instituts, Helmholtz-Zentrums für Polar- und Meeresforschung, das Vorhandensein von Plastikmüll im Kurilen-Kamtschatka-Graben, einer 2250 Kilometer langen Tiefseerinne im nordwestlichen Teil des Pazifischen Ozeans, untersucht. Mithilfe von Schleppnetzen und einem Epibenthosschlitten beprobten die Wissenschaftler*innen 13 Stationen in Tiefen zwischen
Metern. „Dies ist nach unserem Wissen der tiefste Einsatz von Schleppnetzen zur Erforschung der Plastikverschmutzung, der jemals stattgefunden hat“, erläutert Brandt und fährt fort: „Unsere Ergebnisse sind alarmierend: In allen Proben haben wir (Makro-)Plastikmüll gefunden – mit einer Gesamtzahl von 111 Gegenständen.“
Industrieverpackungen und Material, das der Fischerei zugeordnet werden kann, waren die häufigsten Müllkomponenten im Kurilen-Kamtschatka-Graben, die höchstwahrscheinlich aus dem Ferntransport durch den Kuroshio-Ausdehnungsstrom oder aus dem regionalen Seeverkehr und der Fischerei stammen. Mit 33 Prozent waren Schnüre und Kordeln die häufigsten Hinterlassenschaften, gefolgt von Kunststofffragmenten (23 %) und Industrieverpackungen (11 %). Auf sechs Kunststoffabfällen waren eindeutige Etiketten in japanischer, koreanischer und spanischer Sprache zu erkennen.
„Durch die Kategorisierung der anthropogenen Abfälle nach ihrem Verwendungszweck war es möglich, die beiden Hauptquellen von Kunststoffen, die sich am Grabenboden absetzen – Verpackungen und Fischerei – zu unterscheiden. Durch unsere spektroskopischen Analysen konnten wir zudem die wichtigsten Polymertypen, nämlich Polyethylen, Polypropylen und Nylon, identifizieren. Diese Polymere sind in der Meeresumwelt recht stabil, da sie nicht hydrolytisch abgebaut werden und höchstwahrscheinlich auf dem Grund des Grabens landen, ohne in kleinere Teile zu zerfallen“, ergänzt Abel.
Die abgelegene Position des Kurilen-Kamtschatka-Grabens und die hohen Sedimentationsraten machen ihn zu einem potenziellen Standort für eine umfangreiche Kunststoffverschmutzung, was ihn zu einem der am stärksten kontaminierten Meeresgebiete der Welt und zu einer ozeanischen Kunststoffablagerungszone machen könnte, heißt es in der Studie. „Unsere Ergebnisse unterstreichen die Dringlichkeit neuer politischer Maßnahmen für die Abfallbehandlung und die Kunststoffproduktion! Der Meeresboden darf keine Halde für Plastikmüll werden!“, fordert Brandt.
Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.
Die Originalpublikation „Journey to the deep: plastic pollution in the hadal of deep-sea trenches“ findet ihr bei Environmental Pollution.
Neben (Makro-)Plastikmüll wurde auch schon eine hohe Belastung von Mikroplastik im Meeresboden in der Tiefsee festgestellt.
Eine Assel namens Brandt
Pressemitteilung, 6.7.2023, Senckenberg Gesellschaft für Naturforschung
Senckenberg-Meeresforscherin wird Namenspatin für Tiefsee-Art
Senckenberg-Forschende haben mit Kolleg*innen aus den USA und Deutschland eine neue Tiefsee-Assel im Fachjournal „Zootaxa“ beschrieben. Das Tier wurde 2015 im Rahmen der Jungfernfahrt des Forschungsschiffes SONNE gesammelt und stammt aus dem Puerto-Rico-Tiefseegraben im nordwestlichen Atlantik. Anders als erwartet besiedelt die neu entdeckte Asselart einen enormen Tiefenbereich zwischen 4.552 und 8.338 Metern – die größte je nachgewiesene Tiefenverbreitung einer Assel. Benannt wurde die neue Art – Austroniscus brandtae – nach der Senckenberg-Meeresforscherin Prof. Dr. Angelika Brandt in Anerkennung ihrer außergewöhnlichen Forschungsleistungen und ihres Engagements zum Schutz der Tiefsee.
Entlang der Plattengrenzen, wo sich ozeanische unter Kontinentalplatten schieben, bildet sich die tiefste Umgebung der Erde: die Hadalzone mit Tiefen von über sechs bis fast elf Kilometern. „Die Gemeinschaften in diesen Zonen der Meere sind – aufgrund der großen logistischen und technischen Beschränkungen bei der Probenahme – die wohl am wenigsten bekannte Fauna der Erde“, erklärt Dr. Stefanie Kaiser vom Senckenberg Forschungsinstitut und Naturmuseum Frankfurt und fährt fort: „Wir konnten nun eine neue Meeresassel-Art aus den hadalen und abyssalen Tiefen des Puerto-Rico-Grabens im Atlantik beschreiben: Austroniscus brandtae.“
Das 2,7 Zentimeter große Krebstier wurde von dem Forschungsteam zu Ehren von Senckenbergerin Prof. Dr. Angelika Brandt benannt. Brandt leitet seit 2017 die Abteilung Marine Zoologie am Senckenberg-Standort Frankfurt und lehrt an der Goethe-Universität Frankfurt. Ihr Forschungsinteresse gilt den Verbreitungsmustern und treibenden Faktoren für die Evolution von mariner Makrofauna. Dabei forscht sie mit ihrer Arbeitsgruppe hauptsächlich an Krebsen – insbesondere an Meeresasseln (Isopoden). Brandt und ihr Team analysieren die stammesgeschichtliche Herkunft und Besiedlungsgeschichte von Isopoden in der Tiefsee und versuchen zu verstehen welche treibenden Faktoren es in der Tiefsee für hohe Diversität gibt. „Unsere Artbenennung soll Angelika Brandts Engagement und ihre Leistungen in der Tiefsee-Isopodenforschung ehren. Es gibt zudem auch einen ganz persönlichen Grund für die Namenswahl: Angelika Brandt war Doktormutter dreier Autor*innen der Studie und damit entscheidend für unseren Weg in die Tiefseeforschung“, fügt Kaiser hinzu.
Aufgrund der großen Tiefenunterschiede zwischen den Probenahmeorten im Puerto-Rico-Graben – zwischen 4.552 und 8.338 Metern – erwartete das Forschungsteam, dass sie unterschiedliche Arten innerhalb der Gattung finden würden, welche die abyssalen und hadalen Standorte bewohnen. „Mittels morphologischer Untersuchung mit traditioneller Mikroskopie und einer anschließenden molekularen Analyse konnten wir aber zeigen, dass tatsächlich nur die von uns neu beschriebenen Art, Austroniscus brandtae, den Meeresboden des Puerto-Rico-Grabens besiedelt“, erläutert Kaiser. Die neu entdeckte Meeresassel ist die erste Art der Gattung Austroniscus aus dem Atlantik und der weltweit tiefste Nachweis der Gattung.
„Austroniscus brandtae scheint sich in den Tiefen des Puerto-Rico-Grabens sehr gut zu behaupten – dies deutet darauf hin, dass die Vielfalt in den Tiefseegräben abnimmt und nur wenige Arten den dortigen extremen Bedingungen gewachsen sind“, schließt Kaiser.
Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.
Die Originalpublikation „Combining morphological and mitochondrial DNA data to describe a new species of Austroniscus Vanhöffen, 1914 (Isopoda, Janiroidea, Nannoniscidae) linking abyssal and hadal depths of the Puerto Rico Trench“ findet ihr bei Zootaxa.
Wenn ein Go für den Tiefseebergbau beschlossen wird, werden viele Lebensgemeinschaften in der Tiefsee zerstört und bisher unbekannte Arten, wie diese Tiefsee-Assel, vielleicht nie entdeckt.
Das Heroin unter den Klima-Technologien
Disturbing content warning
Dieser Artikel ist keine leichte Kost.
Aber da darin (nicht nur) die Meere vorkommen, sollten wir uns einen Tee machen, tief Luft holen und ihn lesen. Die Autoren schreiben selber: „Bei der Recherche habe ich mir mehr als einmal gedacht: Worüber reden wir hier eigentlich? Das Ganze klingt nach einer Mischung aus absurdesten Verschwörungstheorien und Matrix Teil IV. Auf der anderen Seite: gut, dass wir drüber reden.“ Denn es geht eben nicht um Science-Fiction-Fantasien, sondern um ernst gemeinte Techniken, die im letzten IPCC Bericht viel Raum einnehmen, nur nicht in den Berichten über den IPCC Bericht, Techniken, besser: Eingriffe in unser Ökosystem Erde, die nicht nur ernst gemeint sind, sondern schon ansatzweise praktiziert werden und deren Entwicklung besser finanziert ist als jede Kampagne, die es wirklich ernst meint mit dem Schutz der Natur und der Meere, also unserem Schutz, und die schon einmal über so etwas wie Klimagerechtigkeit nicht nur nachgedacht hat, sondern auch empfindet, in was für einer Verantwortung wir stehen, für eine Zukunft auf diesem Planeten für ALLE zu sorgen. Auch wenn es schwer erträglich ist, diese Fantasien zu Ende zu denken: wir sollten wissen, was andere sich aushecken, um unsere Erde seelenruhig weiter fossil aufheizen zu können. Von diesen Techniken gehört zu haben und dazu Stellung beziehen zu können, gehört zu unserem Job, nicht erst in der Zukunft, sondern jetzt.
Den Artikel „Das Heroin unter den Klima-Technologien“ von Julien Gupta vom 17.06.2023 findet ihr beim Treibhauspost.
Alle reden von CCS – DEEPWAVE auch: im Gastbeitrag von Nico Czaja „Unter die Erde kehren“.
Hightech gemeinsam unter Wasser bringen
Pressemitteilung, 23.05.2023, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
Kick-off Meeting für MUSE-Infrastruktur vom 23. bis 25. Mai am AWI in Bremerhaven
[23. Mai 2023] Die drei großen Meeresforschungsinstitute der Helmholtz-Gemeinschaft – das AWI, das GEOMAR und das Hereon – werden ihre Meerestechnik in den kommenden sieben Jahren im Großprojekt MUSE gemeinsam weiterentwickeln. Das Ziel: Unterwasserrobotik soll schneller und effektiver zum Einsatz kommen, damit die Forschung mit den Folgen von Klimawandel, Artenverlust und Umweltverschmutzung Schritt halten kann.
Wer die Meere erforschen will, braucht Hightech-Geräte. Dafür sind autonome Unterwasserfahrzeuge auf Reisen, die selbständig durch die Meere gleiten, ausgestattet mit einer Vielzahl von Sensoren. Es sind Tausende von Messbojen unterwegs, die durch die Ozeane driften. Hinzu kommen Tauchroboter mit Kameras und Sonaren, die von Schiffen ferngesteuert werden und Rover, die auf Rädern und Ketten über den Meeresboden rollen. Trotz dieser modernen Geräte sind Ozeane, Tiefsee und Küsten noch immer nur lückenhaft erforscht. Um zu verstehen, wie sich die Meere, ihre Lebewesen und die biologischen, chemischen und physikalischen Prozesse mit dem Klimawandel und den vielen Belastungen verändern, müssen in den nächsten Jahren weit größere Meeresgebiete im Detail untersucht und vermessen werden.
Dafür braucht es modernste Technologie und enge Zusammenarbeit. Die drei großen Meeresforschungs-Institute der Helmholtz-Gemeinschaft – das Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), das Helmholtz-Zentrum Hereon und das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel – haben sich jetzt zum Aufbau der Helmholtz-Infrastruktur MUSE zusammengetan, um darin in sieben Jahren gemeinsam Forschungsgeräte und Messverfahren für die Zukunft zu entwickeln. MUSE steht für Marine Umweltrobotik und –Sensorik für nachhaltige Erforschung, dem Schutz und Management der Küsten, Meere und Polarregionen und startet mit einem Kick-off-Meeting vom 23. bis 25. Mai am AWI in Bremerhaven. Ein Schwerpunkt liegt dabei auf Weiterentwicklungen von Sensortechnologien, auf deren Software und Einbindung von künstlicher Intelligenz, auch um zu beurteilen, ob Meeresschutz wirksam wird. „An jedem dieser Institute haben wir für diese Bereiche Expertinnen und Experten. Jetzt bringen wir sie in einem bisher einmaligen Infrastruktur Projekt zusammen“, sagt MUSE-Koordinatorin Martina Löbl vom AWI.
Da die drei Institute in ihrer Forschung unterschiedliche räumliche Schwerpunkte setzen, ist die Entwicklung der Technik vielfältig aufgestellt. Das Hereon bringt seine Expertise in der Küstenforschung ein, das AWI fokussiert sich auf die eisbedeckten Polarregionen, GEOMAR auf den blauen Ozean. „Andererseits gibt es viele Parameter, die für alle drei Institute und ihre Partner wichtig sind – diese werden in einer internationalen Gemeinschaft im Rahmen des Global Ocean Observing System weiterentwickelt“, sagt Martina Löbl. „Das setzt natürlich voraus, dass sich die Messtechnik leicht an die verschiedenen Unterwasserfahrzeuge unserer drei Institute ankoppeln lässt. Im Projekt arbeiten wir daher auch an einer Art Plug-and-play-Prinzip.“
MUSE soll auch die Datenverarbeitung in den Robotern, Unterwassergleitern und autonomen Vehikeln vereinheitlichen. Auch das wird die Arbeit künftig erleichtern. So wird es einfacher, verschiedene Systeme kooperieren zu lassen. Ein Messsystem am Meeresboden etwa könnte ein so genanntes AUV (Autonomes Unterwasser Vehikel) zu Hilfe rufen, wenn es eine besondere Entdeckung gemacht hat – damit das AUV mit seinen Bordsensoren, die Umgebung genauer vermisst. Einheitliche Softwarestandards und Algorithmen sind dabei sehr hilfreich.
Das MUSE-Projekt berücksichtigt auch, dass wissenschaftliche Daten weltweit mehr und mehr zwischen Forschenden ausgetauscht und anderen Arbeitsgruppen zur Verfügung gestellt werden. In der Helmholtz-Gemeinschaft wurde deshalb in den vergangenen Jahren ein einheitlicher Datenstandard entwickelt, der Wissenschaftlern und Wissenschaftlerinnen weltweit künftig den Zugriff auf interessante Bilddaten erleichtern soll. Diesen FAIR (findable, accessible, interoperable and reusable) genannten Standard werden die MUSE-Technologien erfüllen.
Der Aufbau der Helmholtz Infrastruktur MUSE wird mit 29,7 Millionen Euro durch die Helmholtz-Gemeinschaft als strategische Ausbauinvestition gefördert, soll im Jahr 2029 abgeschlossen sein und dann in den Betrieb gehen. „Die darin entwickelten Technologien werden wir zunächst an den bereits vorhandenen Unterwasserfahrzeugen testen, ehe sie bei neuen Fahrzeugen zum Einsatz kommen“, sagt Martina Löbl. Wohlwissend, dass sich Technologien innerhalb von sieben Jahren sehr schnell weiterentwickeln, wird das MUSE-Team die aktuellen Entwicklungen im Blick behalten und Neuheiten permanent in die Arbeit integrieren. Zum Projektende kann das Team dann Lösungen präsentieren, die technisch auf dem neuesten Stand sind.
Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.
Ein ROV, wie hier auf dem Bild zu sehen, ist ein ferngesteuertes Unterwasserfahrzeug (engl. remotely operated underwater vehicle) und kann wertvolle Informationen über das Meeresökosystem liefern. Vor Island hat ein ROV erstmals bislang unbekannte „klare Raucher“ gefilmt.