Klima

Meeresschutz ist Klimaschutz.

COP27: Fonds für Klimaschäden gibt Hoffnung – 1,5-Grad-Limit gefährdet

Ein orangenes Verkehrsschild mit einem Ampelzeichen steht zu einem Viertel komplett Unterwasser

© Kelly Sikkema / Unsplash

Pressemitteilung, 20.11.22, BUND

Dresden/Sharm el Sheik. Als äußerst ernüchternd bewertet Antje von Broock, Geschäftsführerin des Bund für Umwelt und Naturschutz Deutschland (BUND), das Ergebnis der 27. Weltklimakonferenz. „Wie eine Schneelawine nimmt die Klimakrise dramatisch an Fahrt auf. Die Weltgemeinschaft hat in Ägypten viel geredet, aber nur halbherzig agiert. So wird das 1,5-Grad-Limit schnell überschritten. Viele Teile der Erde werden unbewohnbar.“

Gleichzeitig liegt mit dieser COP nun zum ersten Mal nach 30 Jahren ein Ergebnis zu einem Fonds für die Finanzierung des Ausgleichs bleibender Schäden und Verluste durch die Klimakrise vor. Das ist ein Durchbruch. Hitzige Debatten dauerten bis in die Morgenstunden an. Dieser Fonds muss jetzt aber gefüllt werden. Und auch die Klimafinanzierung ist noch nicht zufriedenstellend und langfristig gesichert. „Nur, weil die Länder des globalen Südens mit der Unterstützung der Zivilgesellschaft bis zum Schluss am Thema Klimaschäden festgehalten haben, konnte ein Teilerfolg errungen werden“, so von Broock.

Die großen Industriestaaten haben auf der COP weiter versucht, ihre historische Verantwortung für die Klimakrise abzuwälzen und Gerechtigkeitsaspekte der UN-Konvention zu verleugnen. „Es ist äußerst beunruhigend, dass es kein eindeutiges Bekenntnis zu einem gerechten 1,5-Grad-Pfad und zu dem Ende aller Fossilen gibt. Die EU stellt sich als Klimaretter dar, während auch Deutschland munter weiter in fossile Infrastrukturen weltweit investiert und sich nicht auf einem 1,5-Grad-Pfad befindet“, sagt von Broock.

Die Ergebnisse der Weltklimakonferenz beinhalten nach hitziger Debatte kein Ende der fossilen Brennstoffe. Für das Einhalten des 1,5-Grad-Ziels braucht es jedoch ein sofortiges Bekenntnis zum Ausstieg aus allen fossilen Brennstoffen – Kohle, Öl und Gas. Der deutsche Import von Kohle aus Kolumbien muss aufhören. Unser Hunger nach Fossilen zerstört dort einen Biodiversitäts-Hotspot. „Die verstärkte Nachfrage Deutschlands nach kolumbianischer Kohle führt zu massiven Naturzerstörungen. In der Zwischenzeit leiden die Gemeinden in Kolumbien auch unter den schädlichen Auswirkungen des Kohleabbaus. Wir rufen die deutsche Gesellschaft auf, von ihrer Regierung echte Verpflichtungen zur Bewältigung der Krise und zur Verwirklichung der Klimagerechtigkeit einzufordern“, sagt Tatiana Roa von CENSAT, Friends of the Earth Kolumbien.

Mit großer Besorgnis sehen der BUND und die BUNDjugend die Menschenrechtslage in Ägypten. „Auf dieser Klimakonferenz ist vieles nicht so gelaufen, wie wir es uns gewünscht hätten“, erklärt Karola Knuth, vom Bundesvorstand der BUNDjugend. Mit Blick auf die Menschenrechtslage vor Ort ergänzt die Jugendvertreterin: „Für die veranstaltende Regierung des autokratischen Staates Ägypten ist aber auch nicht alles gelaufen wie geplant. Und das liegt an den vielen Aktivisti, die das Thema der Menschenrechtsverletzungen in Ägypten jeden einzelnen Tag auf der Konferenz angesprochen haben. Es kann keine Klimagerechtigkeit geben ohne Menschenrechte! Es kann keine ökologische Gerechtigkeit ohne soziale Gerechtigkeit geben. Der Kampf um nichts weniger als die Zukunft der Menschheit ist ein Menschenrecht.“

Weitere Informationen:

  • Die UN-Klimakonferenz COP27 in Ägypten
  • Der BUND ist Teil von Friends of the Earth International. Auf BUND.net finden Sie ein Interview mit mit Ubrei-Joe Maimoni Mariere, Mitglied der BUND-Partnerorganisation Friends of the Earth Africa und Koordinator des „Climate Justice and Energy Programme“ . Er hat die „African People’s Counter COP“ mitorganisiert, um die Perspektive der afrikanischen Zivilgesellschaft sichtbar zu machen und ist Teil der „Don’t Gas Africa“ Kampagne, die sich gegen einen Ausbau der Gasförderung auf dem afrikanischen Kontinent ausspricht. Das Interview in Deutsch und Englisch ist online zu finden.
  • Der BUND unterstützt eine Petition von International Service for Human Rights (ISHR) zur sofortigen Freilassung von Alaa Adb El Fattah – #FreeAlaa #FreeThemAll

Diese Pressemitteilung findet ihr beim BUND.

Nicht nur international, auch auf EU-Ebene werden viele fragwürdige Entscheidungen getroffen. Auf unserem Politikblog könnt ihr mehr darüber erfahren, wie die EU-Kommission plant, bestehendes EU-Naturschutzrecht für den Ausbau Erneuerbarer Energien und deren Infrastruktur durch eine Notverordnung weitgehend auszuhebeln.

Auf die Kleinen achten: Auswirkung der Eisbedeckung auf winzige Meerestiere

Gebrochenes Packeis schwimmt auf dem Wasser. Teile der Eisbedeckung sind durch Algen grünlich und leicht rot gefärbt.

© GeSHaFish / Wikimedia Commons (CC BY-SA 3.0)

Gemeinsame Pressemitteilung, 17.11.22, Senckenberg Gesellschaft für Naturforschung und Universität Rostock

Erstmals vergleichende Studie zu kleinsten und mittleren Bodentieren in der Antarktis veröffentlicht

Wissenschaftlerinnen von der Universität Rostock und Senckenberg am Meer haben erstmals untersucht, wie sich Gemeinschaften von Meiofauna und Makrofauna unter verschiedenen Umweltbedingungen im Südpolarmeer zusammensetzen. Sie zeigen in ihrer im Fachjournal „Marine Ecology Progress Series“ veröffentlichten Studie, dass sich eine unterschiedliche Meereisbedeckung zwar auf alle Organismengruppen am Meeresboden auswirkt – die kleineren Tiere der Meiofauna aber deutlich stärker beeinflusst sind. Für zukünftige Bewertungen des Einflusses von Umwelt- und Klimaveränderungen auf die Ökosysteme des Antarktischen Ozeans sollten diese Organismen daher stärker berücksichtigt werden, so das Forscherinnen-Team.

Die kollabierten und schrumpfenden riesigen Larsen-Eisschelfe und ein antarktisches Meereis, das die geringste Ausdehnung seit Beginn der Messungen im Jahr 1979 hat – die Folgen des Klimawandels sind am Südpol bereits deutlich sichtbar. „Uns hat interessiert, wie sich eine unterschiedliche Meereisbedeckung in der Antarktis auf die Lebewesen am Meeresboden auswirkt – auch vor dem Hintergrund der globalen Erwärmung und als Beitrag zur Planung von zukünftigen Schutzgebieten. Hierfür haben wir erstmalig die Gemeinschaften von Organismen der Meiofauna und der Makrofauna in verschiedenen Regionen des Südozeans miteinander verglichen“, erklärt Friederike Säring, Erstautorin der Studie und Doktorandin an der Universität Rostock.

In ihrer großangelegten Studie werteten die Wissenschaftlerinnen 585.825 Individuen aus der Meiofauna – zwischen 32 und 500 Mikrometer große Tiere, wie Fadenwürmer, Ruderfußkrebse oder Bärtierchen – sowie 3.974 Tiere aus der Gruppe der Makrofauna – über 500 Mikrometer große Meeresbewohner, wie Ringelwürmer, Muscheln oder Asseln, aus. „Die Einflüsse der Umwelt auf verschiedene Gruppen von Bodentieren zu untersuchen war nur möglich, weil wir die Expertisen von Universität Rostock und Senckenberg am Meer bündeln konnten“, so Dr. Heike Link, die Initiatorin der von der Deutschen Forschungsgemeinschaft DFG im Schwerpunktprogramm „Antarktisforschung“ geförderten Studie. Die Sediment- und Wasserproben stammen von fünf geographisch und ökologisch unterschiedlichen Regionen, die im Rahmen zweier Expeditionen mit dem Forschungsschiff Polarstern in Tiefen von 222 bis 757 Metern gesammelt wurden.

„Die ausgewählten Beprobungsareale unterscheiden sich in der Bedeckung des Meereises: in der Drake-Passage gibt es beispielsweise kein Meereis, im nordwestlichen Weddellmeer ist die Bedeckung saisonal und im nördlichen Teil des Filchnergrabens ganzjährig und konstant“, erläutert Dr. Gritta Veit-Köhler von Senckenberg am Meer in Wilhelmshaven und fährt fort: „In Gebieten mit einer konstanten Eisbedeckung und wenig Schmelze gelangen die im Eis lebenden Mikroalgen nicht zum Meeresboden und es bildet sich keine Algenblüte im Wasser – dadurch fehlt es an Nahrung für die Organismen am Boden. Wenn es dagegen kein oder nur sehr wenig Meereis gibt, kann sich zwar im freien Wasser ein ‚Phytoplanktonbloom‘ ausbilden, aber das ‚Zusatzangebot‘ der Eisalgen fehlt. Auch hier müssen die Tiere mit weniger Nahrung auskommen.“

Die meisten Tiere beider Größenklassen fand das Forscherinnen-Team in Regionen, in denen sich die Eisdecke regelmäßig öffnet und schließt: Dort fallen Eisalgen zum Meeresboden und Süßwasser, das aus dem schmelzenden Meereis frei wird, führt zu einer stabilen Schichtung der Wassersäule und einer Begünstigung von Algenblüten im freien Wasser. „In solchen Gebieten finden wir aufgrund des guten Nahrungsangebots insgesamt die meisten Tiere – es gibt jedoch deutliche Unterschiede bei der Meio- und Makrofauna. Die kleineren Organismen der Meiofauna sind abhängig von der Meereisbedeckung im Vorjahressommer, aber auch von der Anwesenheit des Eises gemittelt über die letzten neun Jahre vor unserer Probennahme. Die Makrofauna ist dagegen – so die Ergebnisse unserer Analyse – nur signifikant abhängig vom Meereis des Vorjahressommers“, so Säring.

Die Forscherinnen empfehlen daher, die Meiofauna in zukünftige Bewertungen des Einflusses von Umweltveränderungen auf die Ökosysteme des Südlichen Ozeans stärker einzubeziehen. „Um den Einfluss von Klima- und Umweltfaktoren auf die antarktischen Lebensgemeinschaften verlässlich vorhersagen zu können, müssen wir auch auf die Kleinsten achten“, resümiert Veit-Köhler.

Publikation: Säring F, Veit-Köhler G, Seifert D, Liskow I, Link H (2022) Sea-ice–related environmental drivers affect meiofauna and macrofauna communities differently at large scales (Southern Ocean, Antarctic). Mar Ecol Prog Ser 700:13-37.

Diese Pressemitteilung findet ihr bei der Senckenberg Gesellschaft für Naturforschung.

Was es mit dem antarktischen Meereis-Paradoxon auf sich hat, und wie sich die Eisbedeckung in der Arktis aufgrund der Klimakrise verändert, erfahrt ihr in unserem Klima– und Forschungsblog.

NABU: Die Wasserstoff-Farblehre

Vor einer Wasserstoff - Tankstelle steht ein blaues Banner mit der Aufschrift "Hydrogen Refueling Station"

© Syced / Wikimedia Commons (CC0 1.0)

Pressemitteilung, 07.11.22, NABU

Nur grüner Wasserstoff bietet echtes Zukunftspotenzial

Berlin – Wasserstoff wird häufig als der Energieträger der Zukunft bezeichnet. Die Herstellung von Wasserstoff verbraucht viel Energie, deshalb wird der Ausbau der Erneuerbaren Energien zur Grundvoraussetzung einer klimafreundlichen Produktion des Energieträgers. Wasserstoff ist also nicht gleich Wasserstoff. Abhängig vom Herstellungsprozess werden verschiedene Wasserstoffarten unterschieden. Welche Ressourcen welche Prozesse angewendet werden, zeigt folgender Überblick:

  • Grauer Wasserstoff wird aus fossilen, also kohlenstoffhaltigen, Brennstoffen und Wasser in mehreren Prozessschritten (Endgasreformierung) gewonnen. Dabei entsteht als Abfallprodukt CO₂, das direkt in die Atmosphäre abgegeben wird.
  • Blauer Wasserstoff wird aus fossilen, also kohlenstoffhaltigen, Brennstoffen und Wasser in mehreren Prozessschritten (Endgasreformierung) gewonnen, wobei das produzierte CO₂ abgeschieden wird (mittels Carbon-Capture-Technologien).
  • Türkiser Wasserstoff wird aus Erdgas mittels thermischer Verfahren gewonnen. Dabei wird das Erdgas in Wasserstoff und festen Kohlenstoff gespalten.
  • Gelber Wasserstoff wird aus Wasser mittels Elektrolyse gewonnen. Der dafür benötigte Strom besteht aus einer Mischung aus konventionellen und erneuerbaren Energiequellen.
  • Grüner Wasserstoff wird aus Wasser mittels Elektrolyse gewonnen. Der dafür benötigte Strom stammt aus erneuerbaren Energiequellen.

Eine Studie der Forschungsstelle FFE im Auftrag des NABU hat die Bedingungen für eine ökologische und sozial verträgliche Entwicklung von Wasserstofftechnologien untersucht.

Wirklich nachhaltig ist nur der sogenannte grüne Wasserstoff, der mit erneuerbaren Energien gewonnen wird. Doch steht dieser derzeit weder im In- noch im Ausland unbegrenzt zur Verfügung. Einen temporären Einsatz von blauem Wasserstoff zur Überbrückung hält der NABU nur unter bestimmten Bedingungen für einen gangbaren Weg. Der Übergang muss in einem transdisziplinären Prozess unter Beteiligung von Wissenschaft, Politik, Wirtschaft und organisierter Zivilgesellschaft gestaltet und begleitet werden.

Weitere Informationen finden Sie hier.

Diese Pressemitteilung findet ihr beim NABU.

Neben grünem Wasserstoff wird auch grüner Ammoniak und Methanol als emissionsfreier Treibstoff für die Schifffahrt diskutiert. Mehr dazu findet ihr in unserem Klimablog.

Die Zu­kunft der Artenvielfalt im Meer un­ter glo­ba­ler Er­wär­mung

Ganz viele verschiedenfarbige Foraminiferen liegen übereinander

© Holger Krisp / Wikimedia Commons (CC BY-SA 4.0)

Pressemitteilung, 11.10.2022, MARUM

Neue Stu­die zeigt, wie Plank­ton­ge­mein­schaf­ten ge­wan­dert sind und sich seit der letz­ten Eis­zeit ge­wandelt ha­ben

Der vom Men­schen ver­ur­sach­te Kli­ma­wan­del hat die Artenvielfalt der Erde be­reits stark be­ein­flusst. Der Le­bens­raum vie­ler Ar­ten – auch in den Ozea­nen – ver­schwin­det, in­va­si­ve Ar­ten er­obern neue Re­gio­nen. In ei­ner um­fas­sen­den Da­ten­aus­wer­tung hat ein Team von For­schen­den aus Bre­men und Ol­den­burg un­ter­sucht, wie sich die Ar­ten­ge­mein­schaf­ten im Nord­at­lan­tik über ei­nen Zeit­raum von 24.000 Jah­ren – seit der letz­ten Eis­zeit – ver­än­dert ha­ben. Er­war­tungs­ge­mäß sind Ar­ten nach Nor­den mi­griert, aber es ha­ben sich auch neue Ge­mein­schaf­ten ge­bil­det – und zwar auch, nach­dem sich die Tem­pe­ra­tu­ren sta­bi­li­siert ha­ben. Die Er­geb­nis­se sind jetzt in der Fach­zeit­schrift Nature Ecology & Evolution er­schie­nen.

Ko­ral­len­rif­fe lei­den un­ter ozea­ni­schen Hit­ze­wel­len, at­lan­ti­sche Ar­ten tre­ten ver­mehrt in der Ark­tis auf. Wie wird sich die Artenvielfalt bei an­hal­ten­der Er­wär­mung der Ozea­ne wei­ter­ent­wi­ckeln? Die­se Fra­ge ist schwer zu be­ant­wor­ten, denn das Le­ben hat eine Ge­heim­waf­fe im Schrank: die Evo­lu­ti­on. Mit ih­rer Hil­fe kön­nen sich Ar­ten auf neue Be­din­gun­gen an­pas­sen. Evo­lu­ti­on wirkt über Jahr­hun­der­te und Jahr­tau­sen­de und lässt sich da­her in La­bor­ex­pe­ri­men­ten schwer er­fas­sen. Mit­hil­fe von Fos­si­li­en kön­nen For­schen­de ei­nen Blick in die Ver­gan­gen­heit wer­fen und so her­aus­fin­den, wie sich die Artenvielfalt wäh­rend ver­gleich­ba­rer Kli­ma­ver­än­de­rung in der Ver­gan­gen­heit ver­än­dert hat. For­schen­de des MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten der Uni­ver­si­tät Bre­men so­wie des In­sti­tuts für Che­mie und Bio­lo­gie des Mee­res der Uni­ver­si­tät Ol­den­burg (ICBM) ha­ben da­für das Vor­kom­men von fos­si­len Plank­ton­ar­ten im At­lan­ti­schen Oze­an nach der letz­ten Eis­zeit un­ter­sucht. Sie fan­den her­aus, dass mit an­hal­ten­der Er­wär­mung der Ozea­ne vie­le Ar­ten zu­erst wie er­war­tet ver­mehrt in hö­he­re Brei­ten ge­wan­dert sind. Über­ra­schen­der­wei­se stell­ten sie aber fest, dass sich da­bei auch neue Ar­ten­ge­mein­schaf­ten ge­bil­det ha­ben, und dass die Ver­än­de­rung der Ge­mein­schaf­ten nicht voll­stän­dig mit der Er­wär­mung der Ozea­ne ein­her­ging.

Für ihre Stu­die ha­ben Anne Strack, Dr. Lu­kas Jon­kers und Prof. Mi­chal Ku­ce­ra vom MARUM an der Uni­ver­si­tät Bre­men so­wie Dr. Ma­ri­na C. Ril­lo und Prof. Hel­mut Hil­le­brand vom ICBM der Uni­ver­si­tät Ol­den­burg ei­nen gro­ßen Da­ten­satz über die Ar­ten­zu­sam­men­set­zung von fos­si­len plank­to­ni­schen Fo­ra­mi­ni­fe­ren in 25 Se­di­ment­ker­nen des Nord­at­lan­tiks von der letz­ten Eis­zeit vor 24.000 Jah­ren bis in die heu­ti­ge Warm­zeit un­ter­sucht. So konn­ten die For­schen­den ge­nau nach­ver­fol­gen, wie sich die Ar­ten­zu­sam­men­set­zung mit Be­ginn der letz­ten star­ken Erd­er­wär­mung in der Erd­ge­schich­te, nach der letz­ten Eis­zeit, im ge­sam­ten Nord­at­lan­tik ver­än­dert hat. Da­bei ent­deck­te das Team un­er­war­te­te Mus­ter. „Wir wa­ren ver­blüfft, als wir merk­ten, dass sich die Ar­ten­zu­sam­men­set­zung des Plank­tons noch lan­ge wei­ter än­der­te, nach­dem sich die Tem­pe­ra­tur in der heu­ti­gen Warm­zeit wie­der sta­bi­li­siert hat­te“, er­klärt Er­st­au­tor:in Anne Strack.

„Es ist schon lan­ge be­kannt, dass sich Ar­ten­ge­mein­schaf­ten än­dern, wenn sich de­ren Um­ge­bung än­dert. Steigt etwa die Mee­res­tem­pe­ra­tur im Oze­an, wan­dern Ar­ten in hö­he­re Brei­ten ab. Die­ses Ab­wan­dern kön­nen wir auch in un­se­ren Da­ten des Nord­at­lan­tiks be­ob­ach­ten. Das Er­staun­li­che ist aber, dass die „ein­hei­mi­schen“ Ar­ten nicht gleich schnell ab­ge­wan­dert sind“, er­klärt Anne Strack. Die­se Asym­me­trie zwi­schen Ein- und Aus­wan­de­rung führ­te vor al­lem in den mitt­le­ren Brei­ten zur Bil­dung neu­ar­ti­ger Ar­ten­ge­mein­schaf­ten, die es so in der Eis­zeit nir­gends auf der Erde gab. „Noch er­staun­li­cher: Die­se neu zu­sam­men­ge­wür­fel­ten Ge­mein­schaf­ten wa­ren kein flüch­ti­ges Phä­no­men, son­dern sie blei­ben über meh­re­re tau­send Jah­re be­ste­hen“, er­gänzt Prof. Mi­chal Ku­ce­ra.

So­mit lie­fern die Er­geb­nis­se der Stu­die wich­ti­ge Hin­wei­se für das Schick­sal ma­ri­ner Öko­sys­te­me un­ter an­dau­ern­der Er­wär­mung der Ozea­ne. Sie un­ter­stüt­zen Com­pu­ter-Si­mu­la­tio­nen, die dar­auf hin­deu­ten, dass auch die pro­gnos­ti­zier­te künf­ti­ge Er­wär­mung zur Bil­dung neu­er Ar­ten­ge­mein­schaf­ten füh­ren wird. Eta­bliert sich eine neu­ar­ti­ge Plank­ton­ge­mein­schaft, wirkt sich das auf wich­ti­ge Öko­sys­tem­funk­tio­nen durch neue di­rek­te oder in­di­rek­te öko­lo­gi­sche In­ter­ak­tio­nen aus. „Die­se Stu­die trägt auch dazu bei, wie wir den heu­ti­gen ra­pi­den Bio­di­ver­si­täts­wan­del ver­ste­hen, denn sie zeigt uns, dass wir erst weit in der Zu­kunft die Re­ak­ti­on des Le­bens im Meer auf heu­ti­ge Um­welt­ver­än­de­run­gen se­hen wer­den“, sagt Prof. Hel­mut Hil­le­brand.

Die Stu­die ist das Er­geb­nis ei­ner Zu­sam­men­ar­beit zwi­schen Mee­res­geo­log:in­nen und Pa­lä­on­to­log:in­nen aus der Uni­ver­si­tät Bre­men und Öko­log:in­nen aus der Uni­ver­si­tät Ol­den­burg im Rah­men des Ex­zel­lenz­clus­ters „Der Oze­an­bo­den – un­er­forsch­te Schnitt­stel­le der Erde“.

Das MARUM ge­winnt grund­le­gen­de wis­sen­schaft­li­che Er­kennt­nis­se über die Rol­le des Oze­ans und des Mee­res­bo­dens im ge­sam­ten Erd­sys­tem. Die Dy­na­mik des Oze­ans und des Mee­res­bo­dens prä­gen durch Wech­sel­wir­kun­gen von geo­lo­gi­schen, phy­si­ka­li­schen, bio­lo­gi­schen und che­mi­schen Pro­zes­sen maß­geb­lich das ge­sam­te Erd­sys­tem. Da­durch wer­den das Kli­ma so­wie der glo­ba­le Koh­len­stoff­kreis­lauf be­ein­flusst und es ent­ste­hen ein­zig­ar­ti­ge bio­lo­gi­sche Sys­te­me. Das MARUM steht für grund­la­gen­ori­en­tier­te und er­geb­nis­of­fe­ne For­schung in Ver­ant­wor­tung vor der Ge­sell­schaft, zum Wohl der Mee­res­um­welt und im Sin­ne der Nach­hal­tig­keits­zie­le der Ver­ein­ten Na­tio­nen. Es ver­öf­fent­licht sei­ne qua­li­täts­ge­prüf­ten, wis­sen­schaft­li­chen Da­ten und macht die­se frei zu­gäng­lich. Das MARUM in­for­miert die Öffent­lich­keit über neue Er­kennt­nis­se der Mee­res­um­welt, und stellt im Dia­log mit der Ge­sell­schaft Hand­lungs­wis­sen be­reit. Ko­ope­ra­tio­nen des MARUM mit Un­ter­neh­men und In­dus­trie­part­nern er­fol­gen un­ter Wah­rung sei­nes Ziels zum Schutz der Mee­res­um­welt.

Diese Pressemitteilung findet ihr beim MARUM.

Klimaschutz ist, genauso wie der Erhalt der Artenvielfalt, von zentraler Bedeutung für die Zukunft unseres Planeten. Mehr darüber könnt ihr auf unserem Klimablog nachlesen.

Auf dem Bild seht ihr kleine, planktonische Foraminiferen, die Onno Groß, der Gründer von DEEPWAVE, jahrelang intensiv erforscht hat.

Arktischer Ozean künftig auch im Sommer versauert

Sommer im Norden - Ein großer Eisberg erstreckt sich vor Grönland und spiegelt sich im Wasser

© Annie Spratt / Unsplash

Pressemitteilung, 05.10.2022, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Eine neue Studie geht davon aus, dass der Klimawandel die saisonale Versauerung des Arktischen Ozeans verschieben und intensivieren könnte, mit Folgen für das Ökosystem

Die Meere unseres Planeten haben über die vergangenen 200 Jahre mehr als ein Viertel des vom Menschen verursachten Kohlendioxids aus der Atmosphäre aufgenommen. Das hat dazu geführt, dass sie seit Beginn der industriellen Revolution um fast 30 Prozent saurer geworden sind. Der pH-Wert des Wassers ist dabei nicht immer gleich, er schwankt je nach Jahreszeit und Region. Die niedrigsten Werte treten natürlicherweise im Winter auf. Das könnte sich aber ändern, denn mit dem Klimawandel kann sich dieser Wert in den Sommer verlagern, wie ein internationales Forschungsteam mit Beteiligung des Alfred-Wegener-Instituts nun zeigen konnte. Mit weitreichenden Folgen für das Leben im Ozean, wie sie in der Fachzeitschrift Nature beschreiben.

Im Sommer ist die biologische Aktivität von Meereslebewesen am größten, denn in der Regel herrschen hier optimale Bedingungen für Leben, Nahrung und Fortpflanzung. Der Klimawandel bedroht jedoch diese Ausgangslage, denn er verschiebt den Zeitpunkt des niedrigsten pH vom Winter in den Sommer, wie Forschende des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) sowie des französischen Labors für Klima- und Umweltwissenschaften (CEA), LOCEAN – Laboratorium für Ozeanographie und Klimaforschung und des Instituts Pierre-Simon Laplace (IPSL) nun herausfanden. In einer aktuellen Studie kommen sie zu dem Ergebnis, dass sich die Versauerung im Sommer noch in diesem Jahrhundert um etwa ein Viertel verstärken könnte. Einige Organismen des Arktischen Ozeans würden diese Veränderung deutlich spüren und wären weniger tolerant gegenüber einer verstärkten Erwärmung im Sommer.

Verursacht wird diese saisonale Verschiebung durch den verstärkten Anstieg des CO2 im erwärmten Wasser. Im Sommer steigen die Lufttemperaturen in der Arktis, mehr Meereis schmilzt und die arktischen Oberflächengewässer erwärmen sich. Diese Erwärmung wird im Sommer so stark, dass die Versauerung des Meerwassers viel stärker zunimmt und nicht mehr durch die Photosynthese von Algen im Ozean ausgeglichen wird. „Diese Ergebnisse verschlechtern die Aussichten für einige arktische Fische wie den Polardorsch, die bereits durch den Klimawandel bedroht sind“, sagt Mitautor Hans-Otto Pörtner, Biologe und Klimaforscher am AWI. „Die erwarteten Höchsttemperaturen bringen arktische Lebewesen an ihre thermischen Grenzen und überschreiten diese sogar, dies gilt besonders für ihre empfindlichen Lebensstadien.“ Hauptautor James Orr vom LSCE und IPSL ergänzt: „Wer hätte gedacht, dass der Klimawandel die maximale Versauerung um sechs Monate verschieben könnte, während Studien über saisonale biologische Rhythmen Verschiebungen von nur etwa einem Monat ergeben haben.“ „Das Faszinierende an dieser Studie ist, dass die chemischen Winter tatsächlich zu chemischen Sommern werden“, sagt Lester Kwiatkowski, Mitautor vom LOCEAN und IPSL.

In ihrer Studie haben die Forschenden Simulationen von 27 Erdsystemmodellen analysiert und zukünftige Klimaszenarien erarbeitet. Dabei haben sie zum ersten Mal das Potenzial für saisonale Verschiebungen der Versauerung bewertet, mit allen Variablen, die damit zusammenhängen. Denn die Versauerung wird nicht nur durch einen einzelnen Faktor bestimmt, sondern durch ein empfindliches Zusammenspiel von physikalischen und biologischen Prozessen, beeinflusst von der stärkeren Erwärmung der Oberflächengewässer im Sommer. Diese Veränderungen waren größer in den Szenarien mit mittleren und hohen Treibhausgas-Emissionen und deutlich geringer bei niedrigen Emissionen. Für die Forschenden ein Hoffnungsschimmer, dass Schlüsselelemente des Ökosystems des Arktischen Ozeans erhalten werden können, wenn die durchschnittliche globale Erwärmung unter 2 °C gehalten werden kann.

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut.

Die Ozeanversauerung betrifft nicht nur die Polarmeere, sondern auch Organismen wie Kalkalgen oder Seeigel. Mehr zu der Lage der Eismeere findet ihr in unserem Forschungs- oder Klimablog.

Versauernder Meereisverlust

Mehrere Eisschollen schwimmen auf dem Wasser, im Hintergrund geht die Sonne unter

© Alfred-Wegener-Institut / Mario Hoppmann (CC-BY 4.0)

Die Erwärmung und Versauerung der Ozeane – angetrieben durch die Klimakrise – verstärken sich gegenseitig. Unsere Meere nehmen große Mengen an CO2 aus der Atmosphäre auf, wodurch ihr pH-Wert sinkt und sie „sauer“ werden. Das schadet vielen Meeresbewohnern, besonders denen mit Strukturen aus Kalzium-Verbindungen. Forscher:innen haben kürzlich im arktischen Ozean entdeckt, dass durch den starken Meereisverlust zunehmend Wasser freigelegt wird, dass das atmosphärische CO2 besonders gut aufnehmen kann. Mit Daten aus Wasseranalysen von 1994 und 2020 konnte ein drei- bis viermal höherer Versauerungs-Trend im westlichen Arktischen Ozean festgestellt werden – zurückzuführen auf den zunehmenden Meereisverlust in dieser Region. Wenn dieser weiter fortschreitet, könnte sich auch die Versauerung zunehmend verstärken. Die prognostizierten eisfreien Sommer in der Arktis bis zum Jahr 2050 oder vielleicht sogar bereits bis 2030 haben somit weitreichendere Auswirkungen auf das arktische Ökosystem, als bisher angenommen.

Den zugehörigen Artikel „Versauernder Meereisverlust“ von Martin Vieweg vom 30.09.2022 findet ihr bei wissenschaft.de.

Die Originalpublikation „Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020“ findet ihr bei Science.

Wie stark die Meeresbewohner von der Ozeanversauerung beeinflusst werden und ob sie sich anpassen können, muss noch weitestgehend erforscht werden. Ein Langzeit-Experiment mit Kalkalgen hat gezeigt, dass ihre evolutionäre Anpassung an die Ozeanversauerung nur eingeschränkt möglich ist.

Tang trägt Tiere von Küste zu Küste

Eine große Menge Seetang liegt vor der Küste Galways

© Amalia Klein / DEEPWAVE

Millionen Flöße aus Seetang treiben von Küste zu Küste des Südlichen Ozeans. Dabei tragen sie Seesterne, Asseln, Krustentiere, Gliederfüßer, Weichtiere und Würmer mit sich – riesige Mengen an Biomasse werden transportiert. Dadurch können sich die Organismen in neuen Regionen ansiedeln, wie ein internationales Forschungsteam der University of Otago nun herausgefunden hat. Durch den starken Zirkumpolarstrom kann der Seetang dabei sogar die schwer überwindbaren Barrieren der Antarktis bezwingen. Dieser Ferntransport könnte dem Aussterben einiger Arten durch sich verändernde Klimabedingungen entgegentreten. Mithilfe der Seetang-Flöße können marine Arten vor dem Klimawandel fliehen, wenn ihr ursprüngliches Habitat für sie unbewohnbar wird. So wird generell erwartet, dass sich die Lebensräume der Meeres- und Küstenbewohner weiter in Richtung der Pole verschieben.

Zwar bietet dieser Transportweg eine Fluchtmöglichkeit für bedrohte Arten, jedoch können sogenannte Neobiota (auch bekannt als invasive Arten) ökologische Gefahren mit sich bringen. Diesem Thema bedarf es also noch weiterer Beobachtung und Forschung.

Den Artikel „Tang trägt Tiere von Küste zu Küste“ von Wiebke Pfohl vom 09.06.2022 findet ihr bei Spektrum.

Leh­ren aus der Ver­gan­gen­heit: Wie Kalt­was­ser­ko­ral­len auf glo­ba­le Er­wär­mung re­agie­ren

Kalt­was­ser­ko­ral­len: Eine Nahaufnahme der Koralle Lophelia pertusa

© NOAA / Wikimedia Commons (CC BY-SA 2.0)

Pressemitteilung, 07. Juni 2022, MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten, Uni­ver­si­tät Bre­men

Ko­ral­len re­agie­ren auf Ver­än­de­run­gen ih­rer Um­ge­bung – das gilt so­wohl für tro­pi­sche wie für Kalt­was­ser­ko­ral­len und schließt zum Bei­spiel Ände­run­gen von Tem­pe­ra­tur, Salz­ge­halt und pH-Wert ih­rer Um­ge­bung ein. Jetzt ha­ben For­schen­de des MARUM un­ter der Lei­tung von Dr. Ro­d­ri­go da Cos­ta Por­til­ho-Ra­mos in ei­ner Stu­die un­ter­sucht, wie sich wär­me­re Tem­pe­ra­tu­ren im Zuge der Kli­ma­er­wär­mung auf Kalt­was­ser­ko­ral­len aus­wir­ken. Da­für ha­ben sie ge­nau­er be­trach­tet, wie Ko­ral­len in den ver­gan­ge­nen 20.000 Jah­ren auf Um­welt­ver­än­de­run­gen re­agiert ha­ben. Die Stu­die ist jetzt in der Fach­zeit­schrift PLOS Biology er­schie­nen.

Kalt­was­ser­ko­ral­len und hier ins­be­son­de­re die Art Lophelia pertusa sind Ar­chi­tek­ten kom­ple­xer Riff­struk­tu­ren. Sie bil­den die Grund­la­ge für wich­ti­ge Le­bens­räu­me von Tief­see­or­ga­nis­men, die in die­sen Struk­tu­ren Schutz, aber auch Nah­rung fin­den. Al­ler­dings re­agie­ren Ko­ral­len­rif­fe auch sen­si­bel auf sich än­dern­de Le­bens­be­din­gun­gen. Dazu ge­hö­ren etwa die Er­wär­mung der Ozea­ne, die Ver­saue­rung, der ab­neh­men­de Sau­er­stoff­ge­halt und auch der va­ri­ie­ren­de Nähr­stoff­zu­fluss. Ändert sich ei­ner die­ser Pa­ra­me­ter, zum Bei­spiel durch den glo­ba­len Kli­ma­wan­del, kann sich das auf die Ge­sund­heit des ge­sam­ten Ko­ral­len­riffs aus­wir­ken. Zu ver­ste­hen, wie ge­nau die­se Öko­sys­te­me auf Um­welt­ver­än­de­run­gen re­agie­ren, ist da­her laut der ak­tu­el­len Stu­die wich­tig, um sie künf­tig bes­ser schüt­zen zu kön­nen.

Um die kri­tischs­ten Pa­ra­me­ter iden­ti­fi­zie­ren zu kön­nen, die das Aus­ster­ben und Wie­der­an­sie­deln von Kalt­was­ser­ko­ral­len aus­lö­sen kön­nen, ha­ben Er­st­au­tor Ro­d­ri­go da Cos­ta Por­til­ho-Ra­mos vom MARUM – Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten der Uni­ver­si­tät Bre­men und sei­ne Kol­leg:in­nen Se­di­men­te von sechs Kalt­was­ser­ko­ral­len-Stand­or­ten im Nord­at­lan­tik und im Mit­tel­meer un­ter­sucht. In sol­chen Se­di­men­ten sind ver­gan­ge­ne Um­welt­be­din­gun­gen ge­spei­chert. Sie er­mög­li­chen es For­schen­den her­aus­zu­fin­den, wann und war­um sich Kalt­was­ser­ko­ral­len ver­mehrt ha­ben und wann nicht. Die Er­geb­nis­se, be­ton­ten die Au­tor:in­nen, wür­den auch zei­gen, wie die Ko­ral­len auf künf­ti­ge kli­ma­ti­sche Ver­än­de­run­gen re­agie­ren könn­ten. Die Stu­die ana­ly­siert Ver­än­de­run­gen der wich­tigs­ten Um­welt­fak­to­ren über die ver­gan­ge­nen 20.000 Jah­re, den Zeit­raum der letz­ten gro­ßen glo­ba­len Er­wär­mung nach der letz­ten Eis­zeit, und ver­gleicht die­se mit dem Auf­tre­ten von Kalt­was­ser­ko­ral­len.

„Wir ha­ben in die Ver­gan­gen­heit ge­blickt, um zu ver­ste­hen, wie Lophelia pertusa auf Um­welt­ver­än­de­run­gen re­agiert hat“, fasst Por­til­ho-Ra­mos zu­sam­men. Die Ko­ral­len ver­schwan­den oder kehr­ten in eine Re­gi­on meis­tens dann zu­rück, wenn sich das Nah­rungs­an­ge­bot für die Ko­ral­len oder der Sau­er­stoff­ge­halt des Was­sers ver­än­dert hat. Kalt­was­ser­ko­ral­len er­näh­ren sich von mi­kro­sko­pisch klei­nem Plank­ton und Par­ti­keln, die mit der Mee­res­strö­mung trans­por­tiert wer­den. We­nig Ein­fluss auf das Ab­ster­ben und die Ver­meh­rung von Kalt­was­ser­ko­ral­len hat­ten die Tem­pe­ra­tur und der Salz­ge­halt des Was­sers. „Dar­um ge­hen wir da­von aus, dass vor al­lem Nah­rungs­zu­fuhr und die Ver­füg­bar­keit von Sau­er­stoff die ent­schei­den­den Fak­to­ren sein wer­den, wenn es um Le­ben und Tod von Kalt­was­ser­ko­ral­len geht“, be­tont Por­til­ho-Ra­mos. Un­klar ist, wie sich die Oze­an­ver­saue­rung lang­fris­tig aus­wirkt, da es dazu kei­ne pa­läo­zea­no­gra­phi­schen Da­ten gibt.

Als Öko­sys­tem-In­ge­nieu­re tra­gen die Kalt­was­ser­ko­ral­len maß­geb­lich zur Ent­ste­hung von Bio­di­ver­si­täts-Hot­spots in der Tief­see bei. Mit ih­rem Ein­fluss auf Nah­rungs­net­ze und Nähr­stoff­kreis­läu­fe, mit ih­rer Rol­le als Fisch-Kin­der­gär­ten und mit ei­ner be­ein­dru­cken­den Bio­di­ver­si­tät lie­fern Kalt­was­ser­ko­ral­len-Rif­fe wich­ti­ge Öko­sys­tem-Leis­tun­gen. Um die­se auch in Zei­ten des Kli­ma­wan­dels in der Zu­kunft er­hal­ten zu kön­nen, bil­den die Er­geb­nis­se die­ser Stu­die eine wich­ti­ge Grund­la­ge, um wis­sens­ba­sier­te Ma­nage­ment­stra­te­gi­en für sol­che Tief­see-Öko­sys­te­me zu ent­wi­ckeln. Da­mit trägt sie auch maß­geb­lich zu den Zie­len des Bre­mer Ex­zel­len­clus­ters bei, dass sich der Er­for­schung des Oze­an­bo­dens wid­met.

Diese Pressemitteilung findet ihr beim MARUM.

Weitere Informationen zu Kaltwasserkorallenriffen und die Auswirkungen der Klimakrise, findet ihr in unserem Forschungs- und Klimablog.

Der Südozean, wie man ihn noch nie gesehen hat

Zirkumpolarstrom: Ein gewaltiger Eisberg ragt aus dem Meer

© 66north / Unsplash

Pressemitteilung, 07.06.2022, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Eine neue Karte zeigt den Meeresboden des Südlichen Ozeans in nie dagewesenem Detail

Die Beschaffenheit des Ozeanbodens entscheidet mit darüber, wie sich Wassermassen und Strömungen in den Meeren bewegen und unser Klima beeinflussen. Auch die Lebensvielfalt im Meer ist beeinflusst von Meeresbodenstrukturen. Deshalb sind möglichst genaue Informationen zur Bodentopografie für meeres- und klimawissenschaftliche Forschung unabdingbar. Mit der zweiten Version der International Bathymetric Chart of the Southern Ocean (IBCSO v2) hat eine internationale Forschungsgruppe unter Leitung des Alfred-Wegener-Instituts die bislang beste und detailreichste Bodenkarte des Südlichen Ozeans vorgestellt, der im System Erde eine Schlüsselrolle spielt. Die Karte und die komplexe Entwicklungsmethodik wurden im Nature-Fachmagazin Scientific Data veröffentlicht.

Rund um den antarktischen Kontinent erstreckt sich mit dem Südozean eine Schlüsselregion für das System Erde und das Weltklima. Der von starken Westwinden – den berühmten „Roaring Fourties“ – angetriebene Antarktische Zirkumpolarstrom ist hier das zentrale verbindende Element der weltumspannenden thermohalinen Zirkulation und beeinflusst so die Meeresströmungen in Pazifik, Atlantik und im Indischen Ozean. Zudem nimmt das kalte Wasser des Südlichen Ozeans gigantische Mengen an CO2 und Wärme aus der Atmosphäre auf und puffert so vorübergehend einen Teil der negativen Auswirkungen des menschengemachten Klimawandels ab. Darüber hinaus ist er ein Ort hoher biologischer Produktivität und beherbergt eine einzigartige Artenvielfalt.

Trotz dieser großen Bedeutung sind im Südozean – wie in anderen Ozeanen auch – bislang nur vergleichsweise wenige Regionen des Meeresbodens detailliert vermessen und kartiert. Satellitendaten liefern zwar ein flächendeckendes, aber nur relativ grob aufgelöstes Bild. Hochauflösende Daten können derzeit nur schiffsbasiert aufgezeichnet werden. Dies führt unter anderem dazu, dass Forschungsschiffe wie der Eisbrecher Polarstern mit ihren Fächerlotmessungen im Südlichen Ozean immer wieder auf bislang unbekannte topografische Highlights wie einen 1920 Meter hohen Seeberg stoßen, den sie nach Nelson Mandelas Spitznamen „Madiba Seamount“ benannten.

„Wo auch immer man hingeht oder arbeitet, braucht man eine Karte, um sich zu orientieren. Deshalb sind praktisch alle meereswissenschaftlichen Disziplinen auf detaillierte Karten des Meeresbodens angewiesen“, sagt Dr. Boris Dorschel-Herr, Leiter der Bathymetrie am Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI). „So ist die Bodentopografie im Südlichen Ozean zum Beispiel auch entscheidend für das Verständnis vieler klimarelevanter Prozesse. Warme Wassermassen etwa fließen in tiefen Trögen im Kontinentalschelf bis zu den Eisschelfen und Gletschern der Antarktis und beeinflussen deren Abschmelzen. Umgekehrt hängt auch das Abfließen von Gletschern sowie die Stabilität von Eisschilden maßgeblich von der Beschaffenheit des Untergrunds ab. Mit IBCSO v2 liefern wir nun die bislang beste und detailreichste Abbildung des Südlichen Ozeans.“

Die International Bathymetric Chart of the Southern Ocean (IBCSO) ist ein internationales und vom AWI koordiniertes Projekt zur Kartierung des Südlichen Ozeans. Bereits 2013 wurde ein erstes IBCSO-Datenraster (IBCSO v1) mit hochauflösender Karte für den Bereich südlich von 60°S veröffentlicht. In den folgenden Jahren hat die Menge neuer Messdaten erheblich zugenommen.

Seit 2017 ist IBCSO Teil des Nippon Foundation – GEBCO Seabed 2030 Project, das sich das ambitionierte Ziel gesetzt hat, bis 2030 die Weltozeane zu vermessen. „Die neue Version von IBCSO – IBCSO v2 – für den Südlichen Ozean deckt nun in einer hohen Auflösung von 500 mal 500 Metern den kompletten Bereich südlich des 50. Breitengrades ab – und damit eine 2,4 mal größere Fläche Meeresboden als die erste Version“, erklärt Boris Dorschel-Herr. „Dadurch sind nun auch der Antarktische Zirkumpolarstrom und die für sein Verständnis wichtigen ozeanografischen ‚Gateways‘ – die Drake-Passage und die Tasmanische Passage – vollständig enthalten. In die Karte sind über 25,5 Milliarden Messungen eingeflossen, die von 88 Institutionen aus 22 Ländern zur Verfügung gestellt wurden.“

Das Datenraster und eine hochaufgelöste Karte des Südlichen Ozeans stehen frei verfügbar auf der Projektseite www.ibcso.org und unter https://doi.org/10.1594/PANGAEA.937574 zum Download online.

Diese Pressemitteilung findet ihr beim Alfred-Wegener-Institut.

Hier findet ihr einen weiteren Beitrag zur thermohalinen Zirkulation und zum Zirkumpolarstrom. Schaut doch auch bei unserem Klima-Blog vorbei, falls ihr euch über die Entwicklungen der Antarktis und Arktis informieren wollt.

Was „Geisterfossilien” über vergangene Klimafolgen verraten

Geisterfossilien - Abdruck mehrerer Ammoniten auf einem großen Stein am Strand

© Ashleigh Joy Photography / Unsplash

Der Klimawandel und die damit einhergehende Ozeanversauerung macht sich immer stärker in unseren Meeren bemerkbar. Einige Planktonarten, darunter auch die Coccolithophoriden (Kalkflagellaten), produzieren im Zuge ihres Stoffwechsels Kalziumkarbonat, wodurch sie Kalkschalen oder -skelette ausbilden. Die Versauerung des Meerwassers stellt ein großes Problem für diese Organismen dar, denn die Säure zersetzt die lebensnotwendigen Kalkgebilde. Auch in den vergangenen Warmphasen der Erdgeschichte wurden bisher keine Fossilien der Coccolithophoriden gefunden. Nun fanden jedoch schwedische Forscher:innen „Geisterfossilien“, die dafür sprechen könnten, dass die Kalkflagellaten eventuell besser mit der Klimakatastrophe zurecht kommen, als bisher erwartet wurde.

Bei den gefundenen Fossilien handelt es sich nicht um die Kalkschalen selbst, sondern um ihre Abdrücke auf  Pollenfossilien, weshalb das Forscherteam diese als „Geisterfossilien“ bezeichnet. Diese Funde deuten darauf hin, dass die Coccolithophoriden trotz der ungünstigen Klimabedingungen während der Erwärmungsereignisse in der Jura- und Kreidezeit existiert haben müssen. Der Fund der winzig kleinen Abdrücke war somit eine riesige Überraschung für die Forscher:innen. Sie haben jedoch eine Erklärung dafür, wieso bisher wahrscheinlich noch keine vollständigen Fossilien der Kalkflagellaten entdeckt wurden. Der erhöhte Säuregehalt des umgebenen Wassers muss die Kalkplatten im Nachhinein aufgelöst haben, wodurch nur noch die Abdrücke und nicht mehr ganze Fossilien zu finden sind. Darum blieb die Existenz der Coccolithophoriden zu diesen Epochen bisher auch unentdeckt. Aufgrund dieser Entdeckung könnte man davon ausgehen, dass die Kalkalgen durch den Klimawandel eventuell weniger stark belastet werden, als bisher angenommen wurde. Jedoch warnt das Forschungsteam auch vor falscher Vorsicht, denn die Klimakrise verläuft viel schneller, als bisherige Warmphasen. Somit ist es sehr schwierig, Vorhersagen diesbezüglich zu treffen.

Den Artikel „Was „Geisterfossilien” über vergangene Klimafolgen verraten“ vom 19.05.2022 von Elena Bernard findet ihr bei wissenschaft.de.

Das Originalpaper „Global record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming“ von Sam Slater findet ihr bei science.

Falls ihr noch mehr zur Ozeanversauerung und der Anpassung der Kalkalgen lesen möchtet, schaut euch doch diesen Beitrag von uns an: „Ozeanversauerung – die Grenzen der Anpassung“ .

//